Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hochdrucktechnologie bietet Einblicke in die Planetengeschichte

16.02.2015

Neue Forschungsarbeiten reproduzieren die extremen Druck- und Temperaturverhältnisse bei der Planetenentstehung.

Eine internationale Forschungsgruppe hat im Labor mit lasergestützter Hochdrucktechnologie die Druckverhältnisse nachgeahmt, die tief im Inneren von Riesenplaneten und von „Supererden“ - also von großen erdähnlichen Planeten außerhalb des Sonnensystems – herrschen.

Zudem hat sie Druckverhältnisse erzeugt, die zur Entstehung erdähnlicher Planeten führen können, wenn mehrere Himmelskörper aufeinander prallen. An den Forschungsarbeiten, die kürzlich im Wissenschaftsmagazin „Science“ vorgestellt wurden, waren auch Prof. Dr. Natalia Dubrovinskaia und Prof. Dr. Leonid Dubrovinsky von der Universität Bayreuth sowie zwei Bayreuther Doktoranden beteiligt.

Will man zu neuen Erkenntnissen über die Struktur, die Zusammensetzung und die Entwicklung der bisher entdeckten Riesenplaneten und Supererden vordringen, ist eine möglichst genaue Kenntnis der Eigenschaften und Verhaltensweisen von Eisen, Magnesiumoxid und Silikaten erforderlich. Denn vor allem aus diesen Materialien setzt sich das Innere von ungewöhnlich großen Himmelskörpern zusammen.

Insbesondere ist es wichtig zu wissen, wie diese Hauptbestandteile sich bei extrem hohen Drücken und Temperaturen verhalten. Denn die unter Extrembedingungen ausgelösten Schmelzprozesse haben einen entscheidenden Einfluss auf die physikalische und chemische Entwicklung des Planeteninneren. Sobald ein erdähnlicher Planet entstanden ist und seine Bestandteile sich noch im geschmolzenen Zustand befinden, differenzieren sich die Materialien des Planeten aus: in einen metallischen Kern, einen Mantel aus Felsgestein und eine umgebende Atmosphäre. Diese Ausdifferenzierung wird durch Gravitationskräfte ermöglicht und vorangetrieben.

Mithilfe der lasergetriebenen Schockkompression und einer ultraschnellen Diagnostik hat die Forschungsgruppe das Schmelzverhalten von Siliciumdioxid (SiO2) genauer bestimmt. Der Schmelzpunkt ist bei rund 5 Mio. Atmosphären erreicht. Ein vergleichbar hoher Druck ist im Inneren einer Supererde, die das Fünffache der Erdmasse besitzt, an der Grenze vom Mantel zum Kern gegeben; und ebenso auch im Inneren der Planeten Uranus und Neptun.

Die Forschungsarbeiten, die zu diesen Ergebnissen geführt haben, wurden im Lawrence Livermore National Laboratory (LLNL) in Kalifornien geplant. Anschließend hat eine Forschungsgruppe mit Prof. Dr. Natalia Dubrovinskaia (Labor für Kristallographie der Universität Bayreuth) und Prof. Dr. Leonid Dubrovinsky (Bayerisches Geoinstitut der Universität Bayreuth) die Experimente an der University of Rochester in den USA realisiert. Dabei wurden winzige Proben mit sehr großen Mengen von Lichtenergie bestrahlt, die zeitgleich von zahlreichen Lasern erzeugt wurden.

Die Experimente waren durch wegweisende Forschungsarbeiten am Bayerischen Geoinstitut (BGI) möglich geworden. Hier ist einer Forschungsgruppe, der neben Prof. Dubrovinskaia und Prof. Dubrovinsky auch die Bayreuther Doktoranden Ana Černok und Stephan Blaha angehörten, ein Durchbruch auf dem Gebiet der Kristallzüchtung gelungen. Mit den am BGI vorhandenen Technologien der Hochdruckforschung haben sie mehrere millimetergroße durchsichtige Polykristalle sowie Einzelkristalle von Stishovit gezüchtet. Hierbei handelt es sich um eine Form des Siliciumoxids, die sich durch eine hohe Dichte auszeichnet und normalerweise nur in sehr kleinen Mengen in der Nähe von Meteoritenkratern vorkommt.

„Die in Bayreuth, Livermore und Rochester erzielten Messdaten unterstützen insgesamt die Vermutung, dass Mantelsilikate einerseits und der metallische Planetenkern andererseits bei Drücken oberhalb von 300 bis 500 Gigapascal vergleichbare Schmelzpunkte haben“, erklärt Prof. Dubrovinsky und fährt fort: „Es ist gut möglich, dass große felsige Planeten in ihrem Inneren sehr alte Ozeane aus Magma – nämlich aus geschmolzenem Felsgestein – beherbergen. Magnetfelder von Planeten könnten sich in dieser flüssigen Felsschicht herausgebildet haben.“

Veröffentlichung:

M. Millot, N. Dubrovinskaia, A. Černok, S. Blaha, L. Dubrovinsky, D. G. Braun, P. M. Celliers, G. W. Collins, J. H. Eggert and R. Jeanloz,
Shock compression of stishovite and melting of silica at planetary interior conditions,
Science (2015) DOI: 10.1126/science.1261507

Ansprechpartner:

Prof. Dr. Natalia Dubrovinskaia
Laboratorium für Kristallographie
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (0)921-55 3880 oder 3881
Natalia.Dubrovinskaia@uni-bayreuth.de

Prof. Dr. Leonid Dubrovinsky
Bayerisches Geoinstitut (BGI)
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (0)921-55 3736 oder 3707
Leonid.Dubrovinsky@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Meeresforschung in Echtzeit verfolgen
22.02.2017 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

nachricht Weniger Sauerstoff in allen Meeren
16.02.2017 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie