Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hochdrucktechnologie bietet Einblicke in die Planetengeschichte

16.02.2015

Neue Forschungsarbeiten reproduzieren die extremen Druck- und Temperaturverhältnisse bei der Planetenentstehung.

Eine internationale Forschungsgruppe hat im Labor mit lasergestützter Hochdrucktechnologie die Druckverhältnisse nachgeahmt, die tief im Inneren von Riesenplaneten und von „Supererden“ - also von großen erdähnlichen Planeten außerhalb des Sonnensystems – herrschen.

Zudem hat sie Druckverhältnisse erzeugt, die zur Entstehung erdähnlicher Planeten führen können, wenn mehrere Himmelskörper aufeinander prallen. An den Forschungsarbeiten, die kürzlich im Wissenschaftsmagazin „Science“ vorgestellt wurden, waren auch Prof. Dr. Natalia Dubrovinskaia und Prof. Dr. Leonid Dubrovinsky von der Universität Bayreuth sowie zwei Bayreuther Doktoranden beteiligt.

Will man zu neuen Erkenntnissen über die Struktur, die Zusammensetzung und die Entwicklung der bisher entdeckten Riesenplaneten und Supererden vordringen, ist eine möglichst genaue Kenntnis der Eigenschaften und Verhaltensweisen von Eisen, Magnesiumoxid und Silikaten erforderlich. Denn vor allem aus diesen Materialien setzt sich das Innere von ungewöhnlich großen Himmelskörpern zusammen.

Insbesondere ist es wichtig zu wissen, wie diese Hauptbestandteile sich bei extrem hohen Drücken und Temperaturen verhalten. Denn die unter Extrembedingungen ausgelösten Schmelzprozesse haben einen entscheidenden Einfluss auf die physikalische und chemische Entwicklung des Planeteninneren. Sobald ein erdähnlicher Planet entstanden ist und seine Bestandteile sich noch im geschmolzenen Zustand befinden, differenzieren sich die Materialien des Planeten aus: in einen metallischen Kern, einen Mantel aus Felsgestein und eine umgebende Atmosphäre. Diese Ausdifferenzierung wird durch Gravitationskräfte ermöglicht und vorangetrieben.

Mithilfe der lasergetriebenen Schockkompression und einer ultraschnellen Diagnostik hat die Forschungsgruppe das Schmelzverhalten von Siliciumdioxid (SiO2) genauer bestimmt. Der Schmelzpunkt ist bei rund 5 Mio. Atmosphären erreicht. Ein vergleichbar hoher Druck ist im Inneren einer Supererde, die das Fünffache der Erdmasse besitzt, an der Grenze vom Mantel zum Kern gegeben; und ebenso auch im Inneren der Planeten Uranus und Neptun.

Die Forschungsarbeiten, die zu diesen Ergebnissen geführt haben, wurden im Lawrence Livermore National Laboratory (LLNL) in Kalifornien geplant. Anschließend hat eine Forschungsgruppe mit Prof. Dr. Natalia Dubrovinskaia (Labor für Kristallographie der Universität Bayreuth) und Prof. Dr. Leonid Dubrovinsky (Bayerisches Geoinstitut der Universität Bayreuth) die Experimente an der University of Rochester in den USA realisiert. Dabei wurden winzige Proben mit sehr großen Mengen von Lichtenergie bestrahlt, die zeitgleich von zahlreichen Lasern erzeugt wurden.

Die Experimente waren durch wegweisende Forschungsarbeiten am Bayerischen Geoinstitut (BGI) möglich geworden. Hier ist einer Forschungsgruppe, der neben Prof. Dubrovinskaia und Prof. Dubrovinsky auch die Bayreuther Doktoranden Ana Černok und Stephan Blaha angehörten, ein Durchbruch auf dem Gebiet der Kristallzüchtung gelungen. Mit den am BGI vorhandenen Technologien der Hochdruckforschung haben sie mehrere millimetergroße durchsichtige Polykristalle sowie Einzelkristalle von Stishovit gezüchtet. Hierbei handelt es sich um eine Form des Siliciumoxids, die sich durch eine hohe Dichte auszeichnet und normalerweise nur in sehr kleinen Mengen in der Nähe von Meteoritenkratern vorkommt.

„Die in Bayreuth, Livermore und Rochester erzielten Messdaten unterstützen insgesamt die Vermutung, dass Mantelsilikate einerseits und der metallische Planetenkern andererseits bei Drücken oberhalb von 300 bis 500 Gigapascal vergleichbare Schmelzpunkte haben“, erklärt Prof. Dubrovinsky und fährt fort: „Es ist gut möglich, dass große felsige Planeten in ihrem Inneren sehr alte Ozeane aus Magma – nämlich aus geschmolzenem Felsgestein – beherbergen. Magnetfelder von Planeten könnten sich in dieser flüssigen Felsschicht herausgebildet haben.“

Veröffentlichung:

M. Millot, N. Dubrovinskaia, A. Černok, S. Blaha, L. Dubrovinsky, D. G. Braun, P. M. Celliers, G. W. Collins, J. H. Eggert and R. Jeanloz,
Shock compression of stishovite and melting of silica at planetary interior conditions,
Science (2015) DOI: 10.1126/science.1261507

Ansprechpartner:

Prof. Dr. Natalia Dubrovinskaia
Laboratorium für Kristallographie
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (0)921-55 3880 oder 3881
Natalia.Dubrovinskaia@uni-bayreuth.de

Prof. Dr. Leonid Dubrovinsky
Bayerisches Geoinstitut (BGI)
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (0)921-55 3736 oder 3707
Leonid.Dubrovinsky@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Die Ostsee als Zeitmaschine
14.05.2018 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

nachricht Erste Bohrung in einen aktiven Unterwasservulkan
09.05.2018 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

48V im Fokus!

21.05.2018 | Veranstaltungsnachrichten

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics