Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forschungssatellit SMOS gestartet: Wissenschaftler beobachten erstmals Bodenfeuchte und Salzgehalt aus dem All

02.11.2009
KlimaCampus der Universität Hamburg bündelt Forschungsaktivitäten in Deutschland

Der jüngste Forschungssatellit der "Earth Explorer"-Serie der Europäischen Weltraumorganisation ESA startete in der Nacht zum Montag (1:50 GMT) vom russischen Raumfahrtbahnhof Plesetsk.

"Mit dieser Mission erhält die Wissenschaft erstmals flächendeckend Messdaten zur Bodenfeuchte und zum Salzgehalt der Ozeane - Daten, die bisher aufwändig aus Wasser- oder Bodenproben gewonnen werden mussten und längst nicht für alle Regionen zur Verfügung standen", berichtet Prof. Dr. Detlef Stammer. Stammer leitet das SMOS-Projektbüro am KlimaCampus der Universität Hamburg. Hier werden alle deutschen wissenschaftlichen Vorhaben koordiniert, die mit dem Satelliten SMOS verbunden sind.

Um Wetter und Klima besser vorhersagen zu können, braucht die Wissenschaft genauere Daten über den Wasseraustausch zwischen den Ozeanen, den Landflächen und der Atmosphäre. Dank einer neuen Satelliten-Technologie ist SMOS in der Lage, die hierfür wichtigen Klimaparameter Bodenfeuchte und Salzgehalt erstmals weltweit aus dem All zu messen. Herzstück der Mission ist der Mikrowellensensor MIRAS, der die natürliche Ausstrahlung der Erde bei 1,4 Ghz misst. Die Ergebnisse sollen in ozeanographische und meteorologische Modelle eingespeist werden, um Vorhersagen und globale Klimaprognosen zu verbessern.

Salzgehalte und Meeresströmungen

Aufgrund ihrer großen Speicherkapazität für Wärme sind die Weltmeere der entscheidende Klimaregulator der Erde. Ihre Zirkulation spielt eine entscheidende Rolle für den Ausgleich von Klimaextremen, zum Beispiel durch den Transport von Wärme vom Äquator zu den Polen. Angetrieben werden diese Strömungen durch Salzgehalt, Temperatur und die daraus resultierende unterschiedliche Dichte des Meerwassers: Verdunstet Wasser aus dem Ozean, steigt der Salzgehalt, die Oberflächenschicht wird schwerer. Umgekehrt reduzieren Niederschlag oder die Eisschmelze an den Polen die Salzkonzentration. Meereis reflektiert darüber hinaus deutlich mehr solare Strahlung als die offene See und trägt wesentlich zur Energiebilanz der Erde bei. Diese Wechselwirkung war auch in den letzten Polarsommern mit übermäßiger Eisschmelze zu beobachten.

Bodenfeuchte und Energieaustausch

Der Wassergehalt des Bodens ist nicht nur essentiell für das Pflanzenwachstum, sondern auch für den Austausch von Wasser und Energie mit der Atmosphäre. Ist wenig Wasser im Boden, nimmt die Verdunstung ab und die verfügbare solare Energie führt zu einer Erwärmung der bodennahen Luftschichten und einer deutlichen Temperaturzunahme. So wurde etwa die Hitzewelle 2003 durch sehr geringe Bodenfeuchte verstärkt. Der Wassergehalt regelt außerdem, wieviel Niederschlag in den Boden eindringen kann. Ist der Boden bereits gesättigt, fließt der Niederschlag an der Oberfläche ab und es kann schneller zu Hochwasser und Überflutung kommen.

Die Erwartungen der Wissenschaftlergemeinde an die neuen Satellitendaten sind hoch - entsprechend umfangreich sind die Aktivitäten und internationalen Beteiligungen im Zusammenhang mit der so genannten "Wassermission": In mehreren europäischen Ländern laufen bereits Projekte, um die Zuverlässigkeit und Genauigkeit der erwarteten SMOS-Messungen zu prüfen und die schnelle Anwendung der Daten zu ermöglichen. Hierzu werden Simulationen, Daten aus Messstationen und flugzeuggestützte Vergleichsdaten herangezogen. Nach dem Start werden die Instrumente sechs Monate lang getestet und geeicht. Anschließend stellt die ESA verschiedene Produkte bereit - darunter nicht nur die ursprünglichen Mess- und Strahlungsdaten, sondern auch nutzerspezifische Anwendungen wie räumlich und zeitlich gemittelte Karten und für die Wettervorhersagezentren verschiedene "Near-Real-Time" Produkte.

SMOS-Aktivitäten in Deutschland

Das Projektbüro im Institut für Meereskunde am KlimaCampus bündelt Aktivitäten aus allen drei Anwendungsbereichen des Satelliten: Bodenfeuchte, Ozeansalzgehalt sowie die Erkundung von Eis. Es koordiniert die wissenschaftliche Nutzergemeinde an den Universitäten Bremen, Bonn, Hamburg, Heidelberg, Kiel, Frankfurt, Mainz, Oldenburg und München sowie am Max Planck-Institut für Meteorologie, am Bundesamt für Seeschifffahrt und Hydrographie, am Alfred-Wegener Institut für Polar- und Meeresforschung, am Forschungszentrum Jülich und beim Deutschen Wetterdienst in Offenbach. Das Büro dient dabei als Kontaktstelle zwischen den Nutzern und der ESA sowie als Informationsvermittler für Behörden, Industrie und Medien. Es wird gefördert vom Bundesministerium für Wirtschaft und Technologie durch die DLR-Raumfahrtagentur.

Für Rückfragen:

Prof. Dr. Detlef Stammer
Institut für Meereskunde, Universität Hamburg
Tel.: 040-4 28 38-50 52
E-Mail: detlef.stammer@zmaw.de
Ute Kreis
KlimaCampus, Öffentlichkeitsarbeit
Tel.: 040-4 28 38-45 23
E-Mail: ute.kreis@zmaw.de

Birgit Kruse | Universität Hamburg
Weitere Informationen:
http://www.klimacampus.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Von GeoFlow zu AtmoFlow
20.04.2018 | Brandenburgische Technische Universität Cottbus-Senftenberg

nachricht Stärkere Belege für Abschwächung des Golfstromsystems
12.04.2018 | Potsdam-Institut für Klimafolgenforschung

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics