Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie fließt Eis? - Wissenschaftler präsentieren Ergebnisse neuer Messverfahren aus der Antarktis

05.05.2010
Derzeit findet in Wien die jährliche Tagung der European Geosciences Union (EGU) statt.

Dr. Olaf Eisen vom Alfred-Wegener-Institut präsentiert dort Ergebnisse eines umweltschonenden Messverfahrens, das er und seine Kollegen im Frühjahr 2010 erstmalig auf dem Eisschelf der Antarktis eingesetzt haben.

Es liefert Daten, die in Modelle zur Eismassenbilanz eingehen und somit unter anderem eine bessere Vorhersage der zukünftigen Änderungen des Meeresspiegels erlauben.

Die Qualität wissenschaftlicher Modelle hängt entscheidend von der Datengrundlage ab. Deshalb haben Mitarbeiter einer DFG-geförderten Nachwuchsgruppe jetzt erstmalig in der Antarktis ein spezielles geophysikalisches Messverfahren, die Vibroseismik, zur Datenerhebung eingesetzt. „Durch die Vibroseismik-Messungen möchten wir mehr über die Struktur des Eises und damit über das Fließverhalten des antarktischen Eisschildes herausfinden“, erläutert Dr. Olaf Eisen vom Alfred-Wegener-Institut für Polar- und Meeresforschung in der Helmholtz-Gemeinschaft. Er leitet die Nachwuchsgruppe LIMPICS (Linking micro-physical properties to macro features in ice sheets with geophysical techniques: Verknüpfung von mikro-physikalischen Eigenschaften mit Makrostrukturen in Eisschilden mittels geophysikalischer Techniken).

Eisen stellt auf der internationalen Tagung jetzt erste Ergebnisse seiner diesjährigen Messkampagne aus der Antarktis vor. Ziel des zehnköpfigen Teams des Alfred-Wegener-Instituts sowie der Kooperationspartner der Universitäten Bergen (Norwegen), Swansea (Wales, GB), Innsbruck (Österreich), Heidelberg sowie der Kommission für Glaziologie der Bayrischen Akademie der Wissenschaften war es, mittels geophysikalischer Verfahren die interne Struktur und den Aufbau eines Eisschildes von dessen Oberfläche her zu bestimmen. Erstmalig auf einem Eisschild kam neben bewährten sprengseismischen Verfahren auch Vibroseismik zu Testzwecken zum Einsatz.

Ein Problem beim Einsatz von Seismik auf Eisschilden ist die sehr poröse Firnschicht, die 50 bis 100 Meter mächtig sein kann. Bei der Sprengseismik wird mit einem Bohrer ein etwa 10-20 Meter tiefes Loch in den Firn gebohrt, um eine bessere Ankopplung zwischen der Sprengladung und dem umgebenden Firn zu erreichen. Das Bohren ist recht zeit- und energieaufwändig und erlaubt dabei nur einen langsamen Fortschritt entlang der seismischen Profile. Bei der Vibroseismik erfolgt die Erzeugung von seismischen Wellen direkt an der Oberfläche. Dazu wird die Rüttelplatte eines 16 Tonnen schweren Vibroseis-LKW auf den vorkomprimierten Firn gepresst und definiert in Schwingungen versetzt. Im Unterschied zur Sprengseismik ist das anregende seismische Signal bekannt und kann beliebig oft erzeugt werden, was letztendlich zu einer verbesserten Datenqualität führt. Ein Nachteil ist jedoch der Verlust von seismischer Energie im porösen Firn. So haben die Wissenschaftler die beiden Methoden Sprengseismik und Vibroseismik verglichen um herauszufinden, wie viel Energie sich letztendlich von der Oberfläche durch das Eis ausbreitet und wieder zurück zur Oberfläche reflektiert wird. Erste Auswertungen zeigen, dass die Vibroseismik der klassischen Sprengseismik ebenbürtig ist, was die Stärke der Wellen in tieferen Eis- und Sedimentschichten angeht. Eine deutliche Überlegenheit zeigt sich in dem geringeren Aufwand und damit kürzeren Zeit, mit der seismische Profile jetzt vermessen werden können.

Der Wissenschaftler Yngve Kristoffersen, Professor für Geophysik an der Universität Bergen, der die Geräte für die Vibroseismik zur Verfügung stellt, erläutert: „Die erfolgreiche Pilotstudie eröffnet eine neue Ära für effizientere und umweltfreundlichere Methoden, um mit seismischen Verfahren über die interne Struktur des Eises und die darunter liegenden Fels- und Sedimentschichten Informationen zu erhalten. Dies erweitert unser Wissen darüber, wie sich das Eis über das Felsbett bewegt und der Felsen unter dem Eis geologisch aufgebaut ist." Darüber hinaus wird das Verfahren in den nächsten Jahren auch für die Vorerkundung von geologischen Bohrungen zum Verständnis der Klimageschichte unter Schelfeisen seine Anwendung finden.

Das Alfred-Wegener-Institut forscht in der Arktis, Antarktis und den Ozeanen der mittleren sowie hohen Breiten. Es koordiniert die Polarforschung in Deutschland und stellt wichtige Infrastruktur wie den Forschungseisbrecher Polarstern und Stationen in der Arktis und Antarktis für die internationale Wissenschaft zur Verfügung. Das Alfred-Wegener-Institut ist eines der sechzehn Forschungszentren der Helmholtz-Gemeinschaft, der größten Wissenschaftsorganisation Deutschlands.

Margarete Pauls | idw
Weitere Informationen:
http://www.awi.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Der Salzwasser-Wächter auf der Darßer Schwelle
19.09.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie