Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Diamanten mit Röntgentechnik aufspüren

01.04.2014

Röntgenstrahlen durchdringen Objekte und geben Informationen über deren Inneres preis. Mit zwei Röntgenspektren lassen sich unterschiedliche Materialien identifizieren. Ein neuer Algorithmus ermöglicht es, Diamanten in Gestein zu finden.

Das Entwicklungszentrum Röntgentechnik EZRT in Fürth hat einen Demonstrator entwickelt, der Diamanten in Gestein vulkanischen Ursprungs aufspürt. Das EZRT ist ein Bereich des Fraunhofer-Instituts für Integrierte Schaltungen IIS, der eng mit dem Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP in Saarbrücken kooperiert. Die Schwerpunkte liegen bei den Themen Röntgensensorik, Computertomographie, Bildverarbeitung und optischen 3D-Prüfsystemen sowie -Applikationen.


Kimberlitgestein transportiert Diamanten (rechte Bildmitte) aus dem Erdinnern nach oben. Jetzt verspricht eine neue Röntgentechnik einen effizienteren Abbau.

© Fraunhofer IIS / EZRT

Das Verfahren basiert auf dem Dual-Energy-Röntgen. Dabei werden zwei Bilder desselben Objekts mit zwei unterschiedlichen Röntgenspektren erzeugt. Ein am EZRT entwickelter Algorithmus filtert aus den beiden Aufnahmen die jeweiligen Materialinformationen heraus. Die neue Technologie ist in der Lage, wenige Millimeter große Diamanten in Kimberlitgestein mit Korngrößen bis 50 Millimeter zu entdecken. Zusammen mit den Kollegen des Fraunhofer-Instituts für Optronik, Systemtechnik und Bildauswertung IOSB in Karlsruhe arbeiten die Forscher gerade daran, den Demonstrator weiterzuentwickeln. Ziel ist ein Prototyp, der das Gestein vollautomatisch an einem sortiertypischen Bandgerät prüft.

Die Diamantenindustrie nutzt bereits heute Röntgenstrahlen, um die begehrten Edelsteine zu finden. Die aktuellen Verfahren können die Diamanten jedoch nur an der Oberfläche des Gesteins aufspüren. Die mit Röntgenlicht bestrahlten und angeregten Diamanten leuchten im optischen Bereich. »Bei besonders reinen Exemplaren funktioniert die Technik aber nicht, denn gerade diese weisen die Leuchteigenschaft unter Röntgenstrahlung nicht auf«, erklärt der Physiker Jörg Mühlbauer vom EZRT. Um die Edelsteine dennoch zu finden, ist es bislang notwendig, das Vulkangestein in sehr kleine Stücke zu zerbrechen. Das verschlingt große Mengen an Wasser und Energie. »Außerdem besteht die Gefahr, dass dabei größere und damit wertvollere Diamanten beschädigt werden«, sagt Mühlbauer.

Durchleuchten statt Zerkleinern

Beim Demonstrator des EZRT wandert das abgebaute Geröll mit einer Geschwindigkeit von drei Metern pro Sekunde durch einen Röntgenapparat hindurch. Die beiden dabei erzeugten Röntgenbilder geben Informationen über die chemische Ordnungszahl der Materialien, der Anzahl der Protonen in deren Atomkern. Diamant ist reiner Kohlenstoff, ein relativ leichtes Element mit der Ordnungszahl 6. In Kimberlit kommen üblicherweise Silikate und Aluminate vor. Je nach Abbaugebiet und Mine pendeln die Ordnungszahlen zwischen 12 und 14. Der neue Algorithmus nutzt diese Informationen. Er verknüpft sie mit den Daten aus den beiden Röntgenbildern, separiert die Diamanten vom Kimberlit und zeigt die Ergebnisse auf zwei getrennten Bildern an.

Die Methode ist nicht auf das Aufspüren von Diamanten begrenzt. Überall dort, wo es gilt, Materialen zu identifizieren und sauber zu trennen, ist ihr Einsatz denkbar. Ein weiteres Anwendungsbeispiel ist die Aufbereitung von Industriekohle. Dort müssen Steine aussortiert oder der Aschegehalt gering gehalten werden. Die Röntgenspürnase könnte außerdem die begehrten Seltenen Erden finden, die in alten Handys, Computern oder Fernsehern versteckt sind und diese nutzbar machen. »Auf die Diamanten kamen wir durch eine Anfrage aus der Branche. Erste Praxistests hat der Demonstrator in einer Diamantmine bereits bestanden. Jetzt wollen wir die Technologie zusammen mit den Kollegen vom IOSB zur Industriereife führen. Unser Ziel ist es, einen industriellen Prüfprozess zu entwickeln, bei dem mehrere Tonnen Gestein pro Stunde durch die Anlage laufen und analysiert werden«, so Mühlbauer.

Mehrere tausend Euro pro Karat

Diamanten gehören zu den teuersten Rohstoffen weltweit. Im Gegensatz zum Goldpreis hielt sich der Diamant-Index 2013 robust auf hohem Niveau. Brillanten, geschliffene und bearbeitete Rohdiamanten, erzielten Ende 2013 Preise von mehreren tausend Euro pro Karat – etwa 0,2 Gramm. Die Edelsteine entstehen unter hohem Druck und großen Temperaturen in Tiefen zwischen 150 bis 650 Kilometern. Gasreiche vulkanische Gesteine und magmahaltige Kimberlite transportieren die Diamanten bei ihren Eruptionen mit Bruchstücken des Erdmantels nach oben. Die größten Diamantenvorkommen befinden sich in Russland, Afrika, Australien, Kanada und Brasilien.

Dipl.-Phys. Jörg Mühlbauer | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2014/April/diamanten-mit-roentgentechnik-aufspueren.html

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Unterschiedliche Erwärmung von Arktis und Antarktis: Forscher sieht Höhenunterschied als Ursache
18.05.2017 | Universität Leipzig

nachricht Wie wirkt sich der Klimawandel auf die Bewohner der Arktis aus?
18.05.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium 2017: Internet of Production für agile Unternehmen

23.05.2017 | Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Medikamente aus der CLOUD: Neuer Standard für die Suche nach Wirkstoffkombinationen

23.05.2017 | Biowissenschaften Chemie

Diabetes Kongress 2017:„Closed Loop“-Systeme als künstliche Bauchspeicheldrüse ab 2018 Realität

23.05.2017 | Veranstaltungsnachrichten

CAST-Projekt setzt Dunkler Materie neue Grenzen

23.05.2017 | Physik Astronomie