Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bonner Forscher setzen Zugspitz-Gipfel unter Strom

09.12.2009
Forscher der Universität Bonn haben eine raffinierte Methode entwickelt, um die "Innentemperatur" des Zugspitz-Gipfels zu messen: Sie setzen das Gestein unter Strom und messen seine Leitfähigkeit.

Daraus können sie auf die Temperaturverteilung im Fels schließen. Die Wissenschaftler haben ihre Ergebnisse nun im "Journal of Geophysical Research - Earth Surface" vorgestellt (doi:10.1029/2008JF001209). Sie wollen die Methode nutzen, um gefährliche Felsstürze vorherzusagen. Erwärmung gilt als eine wichtige Ursache derartiger Naturkatastrophen.

Vor 3.700 Jahren verlor Deutschland vermutlich seinen einzigen Dreitausender. Innerhalb weniger Minuten brach ein 900 Meter hoher Felskeil aus der Nordflanke der Zugspitze ab - darunter wahrscheinlich auch Teile des Gipfels. Fast vierhundert Millionen Kubikmeter Geröll rasten mit einem gewaltigen Donnern zu Tal. Wollte man die Trümmer wegschaffen, bräuchte man dazu einen Güterzug von 50.000 Kilometern Länge - das ist mehr als der Erdumfang. Heute leben auf den Überresten der Zugspitz-Nordflanke über 10.000 Menschen.

Der Bergsturz war wohl eine Spätfolge des Klimawandels im Holozän: Vor etwa 6.000 Jahren setzte nämlich eine Warmphase ein, in deren Verlauf sich die Durchschnittstemperatur in den Alpen um bis zu zwei Grad erhöhte. Hatten zuvor die eisigen Temperaturen den Zugspitz-Gipfel dauerhaft bei Minusgraden gehalten, begann das Gestein nun zu tauen. Dadurch wurde es zunehmend instabil: Die Katastrophe nahm ihren Lauf.

Sollte diese Theorie stimmen, stehen den Einwohnern von Garmisch-Partenkirchen eventuell gefährliche Zeiten bevor. Denn momentan steigt das Quecksilber am Zugspitz-Gipfel wieder: Die Lufttemperatur dort oben beträgt heute im Jahresschnitt -3,9 Grad Celsius - das ist fast ein Grad wärmer als noch zwischen 1961 und 1991. "Wir wollen wissen, welche Auswirkungen das auf die Stabilität des Gesteins hat", sagt Dr. Michael Krautblatter vom Geographischen Institut der Uni Bonn.

Dazu müssen die Forscher zunächst einmal herausfinden, wie viel von der Erwärmung im Inneren der Felsen ankommt. Einfach tiefe Löcher zu bohren und Thermometer hineinzustecken, funktioniert in den bereits instabilen Bereichen nicht. Stattdessen nutzen die Wissenschaftler ein elektrisches Tomographie-Verfahren. Anfang des 20. Jahrhunderts wurde in die Nordwand des Zugspitz-Gipfels ein fast 300 Meter langer Stollen gegraben. "In die Wand dieses Stollens haben wir 140 Elektroden geschraubt", erläutert Krautblatter. "An jeweils zwei davon legen wir eine Spannung an - an welche zwei, wird variiert. An allen anderen messen wir, wie viel Strom dort ankommt."

Die Forscher gewinnen so pro Messtag mehr als 1.400 Werte. Hieraus können sie mit Hilfe tomographischer Algorithmen die Verteilung der elektrischen Leitfähigkeit innerhalb des Felsens bestimmen. Und diese hängt stark von der Temperatur ab. Das Gestein an sich leitet Strom nämlich nicht. Es enthält aber winzige mit Wasser gefüllte Hohlräume. Darin gelöst sind geladene Teilchen, die Ionen. Solange das Wasser flüssig ist, können sie sich bewegen. Sobald es aber gefriert, ist es mit ihrer Beweglichkeit vorbei: Die Leitfähigkeit sinkt. "Und zwar nicht abrupt, sondern in Abhängigkeit von der Temperatur", erklärt der Bonner Geophysiker Professor Dr. Andreas Kemna. "Anfangs sind nämlich nur Teile des Wassers gefroren. Dieser Anteil nimmt aber mit steigenden Minusgraden schnell zu."

Um diese Zusammenhänge zu verstehen, hatten die Forscher zunächst ein Stück Zugspitz-Gestein in ihr Bonner Labor verfrachtet. Dort ließen sie es kontrolliert auftauen und abkühlen und ermittelten dabei die Änderung der Leitfähigkeit. Ihre Ergebnisse übertrugen sie dann auf die Messwerte aus dem Feldversuch. Monat für Monat konnten sie so ein Tomographiebild des Zugspitz-Gipfels erstellen, an dem sich die Temperatur im Gestein ablesen lässt. Und das lokal für jeden Bereich zwischen Stollen und Nordwand. "Wir können also beispielsweise sagen: An dieser Stelle ist der Felsen in neun Metern Tiefe -3 bis -4 Grad kalt", sagt Kemna.

Die aktuelle Studie ist weltweit der erste Beleg, dass so etwas überhaupt geht. So ist auf den Tomographiebildern gut zu erkennen, wie sich die Temperatur im Fels während des Frühjahrs und Sommers schrittweise erhöht. Die Permafrost-Zone (das ist der Bereich, in dem dauerhaft Temperaturen unter Null herrschen) wird dabei sukzessive kleiner. Besonders trifft die saisonale Erwärmung Stellen in der Nordwand, die nicht von einer isolierenden Schneeschicht bedeckt sind.

Wärme lässt Felsen rutschen

Die Forscher haben inzwischen auch erste Anhaltspunkte, wie sich die Erwärmung auf die Stabilität des Gesteins auswirkt. "Wir konnten bei Experimenten in unserer Kältekammer zeigen, dass die Reibung zwischen zwei Felsen bei steigenden Temperaturen sinkt", erklärt Michael Krautblatter. "Die feinen Unebenheiten, die das Gestein miteinander verzahnen, werden dann instabiler und schleifen sich leichter ab. Wir beobachten an der Zugspitze momentan einen großen Steinquader, der seit ewigen Zeiten auf einer steil abschüssigen Felswand ruht. Wenn die Temperaturen sich weiter nach oben entwickeln, könnte es mit dieser Ruhe bald vorbei sein." Sollte sich der Quader tatsächlich lösen und ins Tal schießen, kann das weitere Felsstürze auslösen - ähnlich wie ein einzelner Skiläufer ein ganzes Schneefeld ins Rutschen bringen kann.

Bilder zu dieser Pressemitteilung gibt's im Internet unter
http://www3.uni-bonn.de/Pressemitteilungen/365-2009
Kontakt:
Dr. Michael Krautblatter
Geographisches Institut der Uni Bonn
Telefon: 0228/73-9098
E-Mail: michael.krautblatter@giub.uni-bonn.de
Prof. Dr. Andreas Kemna
Steinmann-Institut, Lehrstuhl für Angewandte Geophysik der Uni Bonn
Telefon: 0228/73-3060
E-Mail: kemna@geo.uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de/
http://www3.uni-bonn.de/Pressemitteilungen/365-2009

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur
22.06.2017 | Fraunhofer-Gesellschaft

nachricht Ursuppe in Dosen
21.06.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften