Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bohrung im türkischen Vansee: Forscher schauen 400.000 Jahre in die Vergangenheit

01.04.2011
Nie zuvor konnten Wissenschaftler so weit in die Klimageschichte des Nahen Ostens zurückblicken: Ein internationales Team hat 220 Meter tief im Grund des Vansees gebohrt.

Erste Stichproben der Bohrkerne zeigen: Das Klima schwankte dramatisch, gewaltige Vulkanausbrüche waren nicht selten, Erdbeben erschütterten die Region − und der jetzt lebensfeindliche salzhaltige See war früher mal ein Süßwassersee. Am Montag präsentieren Forscher der Universität Bonn zusammen mit ihren Kollegen ihre ersten Ergebnisse auf einem geowissenschaftlichen Kongress in Wien. Doch die eigentliche Arbeit beginnt erst.

Würde man alle Bohrkerne, welche die Forscher aus dem Grund des Vansees ergattert haben, aneinanderreihen, ergäben sie eine Länge von 800 Meter. Die Bohrung im letzten Jahr hat sich gelohnt, berichtet jetzt der Bonner Paläontologe Professor Dr. Thomas Litt. Er ist Sprecher eines internationalen Forscherkonsortiums, das die Sedimente des Vansees genauer unter die Lupe nehmen will. „Die Sedimente in unseren Bohrkernen stammen aus den letzten 400.000 Jahren − und das ist wirklich spektakulär!“, sagt Prof. Litt. „Bisher gibt es in der Region des Nahen Ostens kein so weit zurückreichendes kontinentales Klimaarchiv. Außerdem ist die Qualität der Bohrkerne und damit die zeitliche Auflösung hervorragend.“

See-Sedimente als Geschichtsbücher

Auf dem Boden eines Sees sammeln sich über viele Jahrtausende ungestört Mineralien, Blütenstaub und andere Materialien an − Zeitzeugen der Klimageschichte einer Region. Der Vansee liegt im Osten der Türkei; seine Sedimente haben besonders viele Geschichten zu erzählen, denn der See ist sehr alt. Außerdem ist er groß und tief, so dass sich dort ungestört alles ablagern konnte, unbeeindruckt von Wind und Wetter. In anderen Seen hingegen wühlen zudem Muscheln und Schnecken den Seegrund um, aber am Boden des Vansees gibt es kein Leben.

„In den Bohrkernen sind die jährlichen Schichten daher ausgezeichnet sichtbar“, sagt Prof. Litt. Ähnlich wie Baumringe lassen sich an Sedimenten die Jahre abzählen: Jedes Jahr ist durch eine weiße Sommerschicht und eine dunkle Winterschicht im Sediment verewigt. Im Sommer verdunstet Seewasser, und weißer Kalk scheidet sich ab. Im Winter spült die Regenzeit dunkle Tonschichten in den See. All diese Mineralien sammeln sich auf dem Seegrund.

Anhand der gefundenen Pollen lässt sich auch das Klima rekonstruieren: Ist es warm und feucht, gedeihen viele Eichen am Ufer des Sees; in kalten und trockenen Zeiten eher Gräser, Beifuß und Gänsefuß. „Eine erste Pollenanalyse hat gezeigt, dass ein mehrfacher Wechsel zwischen Warm- und Kaltzeiten in den Sedimenten dokumentiert ist“, erläutert der Paläontologe. „Neben dem jetzigen erdgeschichtlichen Zeitabschnitt, dem Holozän, können wir drei weitere Warmzeiten ablesen. Das ist bisher einmalig in dieser Region.“

Bei der Bohrung stießen die Forscher zudem auf mehr als hundert Ablagerungen von vulkanischer Asche. Eine dieser Schichten war sogar über sieben Meter dick: „Da hat es also mächtig gerumpelt in der Vergangenheit“, sagt Prof. Litt. Auch Erdbeben haben die Gegend erschüttert, zeigen die Bohrkerne: An einigen Stellen sind die Sedimente dadurch gerissen und deformiert.

„In den untersten Sedimentschichten haben wir auch die Überbleibsel von Muscheln und Schnecken gefunden“, sagt Litt. Der jetzt stark alkalische und salzhaltige lebensfeindliche See war früher also mal ein Süßwassersee mit lebendigen Bewohnern.

Aus der Vergangenheit lernen

„Neben der Rekonstruktion der Klimageschichte interessiert uns vor allem, wie die Vegetation auf den starken Vulkanismus der Region reagiert hat“, definiert Prof. Litt seine Forschungsziele. „Also die Frage: Wie schnell erholt sich die Pflanzenwelt nach einem Vulkanausbruch, der die ganze Landschaft mit einer dicken Ascheschicht eingedeckt hat?“

Der Blick in die Vergangenheit hilft dabei, die Zukunft besser einzuschätzen, sagt der Bonner Forscher: „Man kann zwar nicht die Zukunft voraussagen, aber man kann aus Szenarien in der Vergangenheit lernen. So können vergangene erdgeschichtliche Ereignisse beispielsweise dabei helfen, gewisse Risiken besser zu beurteilen.“

In den nächsten drei bis fünf Jahren wird das internationale Forscherteam die geborgenen Bohrkerne ganz genau im Labor untersuchen: „Wir haben bereits insgesamt 5000 Proben genommen, die alle analysiert werden wollen.“ Die wissenschaftliche Arbeit beginnt also gerade erst.

Die eigentliche Bohrung hat 1,4 Millionen US-Dollar gekostet. Dabei kam aufgrund der sehr großen Wassertiefen von bis zu 360 Meter erstmals eine neue Spezial-Bohrtechnik zum Einsatz. Die Finanzierung stammte aus Mitteln des International Continental Scientific Drilling Program (ICDP), der Deutschen Forschungsgemeinschaft (DFG) und des Schweizer Nationalfonds. An den Arbeiten beteiligt sind neben der Universität Bonn auch das Schweizer Wasser-Forschungsinstitut Eawag, das Leibniz-Institut für Meereswissenschaften an der Universität Kiel (IFM-GEOMAR), die Technische Universität Istanbul, die Yüzüncü Yil Universität in Van und die Bohrfirma DOSECC Exploration Services.

Kontakt:
Prof. Dr. Thomas Litt
Steinmann-Institut für Geologie, Mineralogie und Paläontologie
Universität Bonn
Telefon: 0228/73-2736
E-Mail: t.litt@uni-bonn.de

Dr. Andreas Archut | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Berichte zu: Bohrkern Bohrung Erdbeben Mineralien Muschel Schnecke Süßwassersee Vansee Vulkanausbruch

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Stagnation im tiefen Südpazifik erklärt natürliche CO2-Schwankungen
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht Birgt Mikroplastik zusätzliche Gefahren durch Besiedlung mit schädlichen Bakterien?
21.02.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics