Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bleihaltige Partikel beeinflussen Klima über die Eisbildung in Wolken

30.04.2009
Bleibelastung der Luft hat in der Vergangenheit den Treibhauseffekt vermutlich stark gedämpft - Veröffentlichung in Nature Geoscience

Die Bleibelastung der Luft regt die Bildung von Eisteilchen in den Wolken an. Ein Team von Wissenschaftlern aus den USA, Deutschland und der Schweiz hat herausgefunden, dass bleihaltige Partikel sehr gute Keime für die Entstehung von Eiskristallen in Wolken sind.

Das wirkt sich nicht nur auf die Bildung von Regen und Niederschlägen aus, sondern möglicherweise auf das gesamte Erdklima. Denn die Wärmestrahlung der Erde wird von Eiswolken (Zirrus) mit bleihaltigen Partikeln stärker in den Weltraum abgegeben, als bisher angenommen. Im Vergleich zu bleiarmen Wolken kühlen bleireiche Wolken also die Erde. In den letzten zwanzig Jahren gingen die vom Menschen verursachten Bleiemissionen stetig zurück. Dies könnte bedeuten, dass sich der Treibhauseffekt heute stärker auswirkt, nachdem er früher durch bleihaltige Wolken gedämpft wurde.

Im Sphinx-Observatorium, einer Schweizer Forschungsstation auf dem Jungfraujoch in 3580 Meter Höhe, hatten Wissenschaftler von verschiedenen Einrichtungen, darunter die Universitäten Frankfurt und Mainz sowie das Max-Planck-Institut für Chemie in Mainz, in den Wintern 2006 und 2007 die chemische Zusammensetzung von Wolken untersucht. "Uns interessiert vor allem die Frage, wie sich Eispartikel bilden. Denn die Wassertröpfchen in der Atmosphäre gefrieren nicht einfach bei null Grad, sondern brauchen bis zu einer Temperatur von minus 37 Grad einen Eiskeim, also ein Aerosolpartikel, das die Eisbildung auslöst", erklärt Univ.-Prof. Dr. Joachim Curtius vom Institut für Atmosphäre und Umwelt (IAU) an der Goethe-Universität Frankfurt. Das Prinzip wird beispielsweise auch bei Schneekanonen eingesetzt, wo teilweise Proteine von Pseudomonas-Bakterien als Eis bildende Keime verwendet werden - eine umstrittene Anwendung.

Wissenschaftler messen Eispartikeln in Wolken große Bedeutung bei, weil sie ganz wesentlich zur Entstehung des Regens in Wolken beitragen. "Wir können weder Klimaveränderungen noch den globalen Wasserkreislauf verstehen, wenn wir nicht wissen, welche Partikel die Eisbildung in der Atmosphäre verursachen", teilt Univ.-Prof. Dr. Stephan Borrmann mit. Der Atmosphärenphysiker ist Leiter der "Abteilung Partikelchemie", einer gemeinsamen Einrichtung am Max-Planck-Institut für Chemie und dem Institut für Physik der Atmosphäre der Universität Mainz.

Die Untersuchungen am Jungfraujoch und in den Rocky Mountains in Colorado ergaben, dass Teilchen mit einem Bleianteil zu den wirksamsten Eiskeimen gehören, die in der Atmosphäre zu finden sind. "Das entscheidend Neue für uns ist die überhöhte Häufigkeit, mit der wir Blei in den Eispartikeln gefunden haben", so Curtius. "Wir konnten das Blei etwa in jedem zweiten Eiskeim nachweisen, im Durchschnitt der Aerosolpartikel dagegen nur in jedem zwanzigsten." Blei alleine macht jedoch noch keinen Eiskeim. Winzige Bleipartikel verbinden sich mit anderen Bestandteilen der Luft wie Mineralstaub aus der Sahara. Ein Teil dieser Mineralstaub-Teilchen ist selbst schon als Eiskeim wirksam. In Verbindung mit Blei wird jedoch aus solch einem guten Eiskeim ein sehr guter Eiskeim, der schon bei wärmeren Temperaturen und bei geringerer Feuchtigkeit die Eis-Kristallisation auslöst.

Laborexperimente an der AIDA-Aerosol- und Wolkenkammer am Forschungszentrum Karlsruhe bestätigten die Ergebnisse der Feldstudien in der Schweiz. Modellrechnungen der ETH Zürich zeigen darüber hinaus, dass die bleihaltigen Partikel die Eigenschaften von Zirruswolken so verändern, dass die von der Erde ins All abgegebene langwellige Strahlung deutlich beeinflusst wird. Insgesamt könnte die abgegebene Wärme der Erde theoretisch also um bis zu 0,8 Watt pro Quadratmeter steigen, wenn alle eisbildenden Mineralstaubteilchen Blei enthielten. Zum Vergleich: Der Klimaantrieb durch die menschgemachten CO2-Emissionen beträgt etwa 1,6 Watt pro Quadratmeter. Die bleihaltigen Eiskeime haben also vermutlich über ihre indirekte Wirkung auf die Eiswolkenbildung einen abkühlenden Effekt auf das Klima.

Die Wissenschaftler nehmen nun an, dass durch die wesentlich höhere Bleibelastung in den 70er und 80er Jahren - verursacht von verbleitem Benzin und dem Bleiausstoß aus Kraftwerken - der überwiegende Teil aller Mineralstaub-Teilchen mit Blei kontaminiert war und die Erde dadurch mehr Wärme abgegeben hat als heute. "Dadurch wurde vermutlich der globale Temperaturanstieg damals noch etwas abgebremst, während heute der Treibhauseffekt fast voll durchschlägt", sagt Curtius.

Eine Rückkehr zu den Bleiemissionen des letzten Jahrhunderts kann trotzdem unmöglich erwünscht sein. Blei ist ein giftiges Schwermetall, das zu heftigen Gesundheitsschäden führen kann. "Wir können aber jetzt im Nachhinein vielleicht erklären, warum der Temperaturtrend in den letzen Jahren stärker nach oben geht, nämlich weil die anthropogene Freisetzung von Blei - und auch Sulfat - gedrosselt wurden", so Borrmann.

"Die Ergebnisse zeigen, dass vom Menschen verursachte Emissionen die Eiskeime beeinflussen können und dadurch Niederschlag und Klima gestört werden können", heißt es in der Veröffentlichung der Forschungsergebnisse in Nature Geoscience. An dem Projekt waren außerdem auch die TU Darmstadt, das Leibniz-Institut für Troposphärenforschung in Leipzig sowie das Pacifc Northwest National Laboratory in Richland/Washington und die US-Behörde National Oceanic and Atmospheric Administration in Boulder/Colorado beteiligt. Die Beteiligung der Universitäten Mainz und Frankfurt, der TU Darmstadt und des Max-Planck-Instituts für Chemie erfolgte hierbei im Rahmen des DFG-Sonderforschungsbereichs 641 "Die Troposphärische Eisphase".

Originalveröffentlichung:
Daniel J. Cziczo, Olaf Stetzer, Annette Worringen, Martin Ebert, Stephan Weinbruch, Michael Kamphus, Stephane J. Gallavardin, Joachim Curtius, Stephan Borrmann, Karl D. Froyd, Stephan Mertes, Ottmar Möhler & Ulrike Lohmann
Inadvertent climate modification due to anthropogenic lead
Nature Geoscience, Online-Veröffentlichung vom 19. April 2009
doi: 10.1038/ngeo499
Kontakt und Informationen:
Univ.-Prof. Dr. Joachim Curtius
Institut für Atmosphäre und Umwelt (IAU)
Goethe-Universität Frankfurt
Tel. +49 69 798-40258
Fax +49 69 798-40262
E-Mail: curtius@iau.uni-frankfurt.de
http://www.geo.uni-frankfurt.de/iau
Univ.-Prof. Dr. Stephan Borrmann
Abteilung Partikelchemie
Max-Planck-Institut für Chemie und
Institut für Physik der Atmosphäre
Johannes Gutenberg-Universität Mainz
E-Mail: borrmann@mpch-mainz.mpg.de
http://www.mpch-mainz.mpg.de/
http://www.uni-mainz.de/FB/Physik/IPA/
Dr. Stéphane Gallavardin
Abteilung Partikelchemie
Max-Planck-Institut für Chemie und
Institut für Physik der Atmosphäre
Johannes Gutenberg-Universität Mainz
Tel. +49 6131 305 588 (Büro) oder +49 6131 305 596 (Labor)
Fax +49 6131 305 235
E-Mail: gallavas@mpch-mainz.mpg.de
http://www.mpch-mainz.mpg.de/

Petra Giegerich | idw
Weitere Informationen:
http://www.uni-mainz.de/presse/29115.php
http://www.nature.com/ngeo/journal/vaop/ncurrent/abs/ngeo499.html

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Internationales Team um Oldenburger Meeresforscher untersucht Meeresoberfläche
21.03.2017 | Carl von Ossietzky-Universität Oldenburg

nachricht Weniger Sauerstoff – ist Humboldts Nährstoffspritze in Gefahr?
17.03.2017 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Impfstoffe zuverlässig inaktivieren mit Elektronenstrahlen

23.03.2017 | Biowissenschaften Chemie

Darmkrebs: Wenn die Wachstumsbremse fehlt

23.03.2017 | Biowissenschaften Chemie

Riesensalamander, Geckos und Olme – Verschwundene Artenvielfalt in Sibirien

23.03.2017 | Biowissenschaften Chemie