Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erlanger Forscher leiten europäisches Groß-Projekt für Neutrino-Teleskop

05.04.2006


Während die meisten Astronomen ihre Teleskope gen Himmel richten, um mehr über das Weltall und seine Geheimnisse zu erfahren, blickt eine internationale Forschergruppe unter Leitung des Erlanger Physikers Prof. Dr. Ulrich Katz in die genau entgegengesetzte Richtung: Professor Katz, Inhaber des Lehrstuhls für Experimentalphysik (Astroteilchenphysik) an der Universität Erlangen-Nürnberg, und sein Team planen ein riesiges Neutrino-Teleskop, das den Namen KM3NeT trägt und auf dem Grund des Mittelmeers verankert werden soll. Eine vorbereitende Design-Studie wird mit 20 Millionen Euro gefördert, neun Millionen davon kommen von der EU. An dem auf drei Jahre angelegten Projekt arbeiten insgesamt 36 Forschungsinstitute aus Astroteilchenphysik, Teilchenphysik, Astrophysik sowie Meeresforschung und Tiefseetechnologie mit. Etwa einhundert der beteiligten Wissenschaftler treffen sich zum Projektstart vom 11. bis zum 13. April 2006 in Erlangen, um dort das erste Projektjahr zu planen und Aufgaben zu verteilen. Die Auftaktveranstaltung findet am 11. April, um 9.30 Uhr im Erlanger Physikum, Hörsaal HG, Staudtstraße 5, Erlangen, statt.



Ziel der europäischen Design-Studie wird es sein, innerhalb der kommenden drei Jahre die genauen technischen Spezifikationen des KM3NeT-Neutrino-Teleskops zu erarbeiten und zu dokumentieren. Auf dieser Grundlage soll dann die Finanzierung des etwa 200 Millionen Euro teuren Projekts sichergestellt und zügig mit dessen Realisierung begonnen werden. Intensiv eingebunden in die Design-Studie sind Institute aus dem Bereich der Meeresforschung und -technologie, die einerseits ihre Expertise in das Design des Neutrino-Teleskops einbringen, andererseits aber auch die entstehende Tiefsee-Infrastruktur für Forschung in Bereichen wie zum Beispiel Meeresbiologie, Geologie, Geophysik, Ozeanographie und Umweltwissenschaften nutzen werden. KM3NeT ist somit eine multidisziplinäre Forschungs-Infrastruktur und wird als solche auf der Prio-

... mehr zu:
»Detektoren »Neutrinos »Strahlung »Teilchen

ritätenliste des European Strategy Forum on Research Infrastructures geführt.

Neutrinojäger auf dem Meeresgrund


Mit Hilfe des KM3NeT-Teleskops wollen die Forscher versuchen, eines der größten Rätsel der Astrophysik zu lösen: die Frage nach der Herkunft der hochenergetischen kosmischen Strahlung. Diese Strahlung besteht aus Protonen und schwereren Atomkernen, die aus dem Weltall kommend ständig die Atmosphäre der Erde bombardieren. Trotz jahrzehntelanger Anstrengungen ist es der Wissenschaft bis heute nicht gelungen, sicher zu sagen, woher die Teilchen kommen und wie die kosmischen Teilchenbeschleuniger funktionieren.

Von Neutrinos - winzigen Elementarteilchen, die durch das Weltall rasen - erhoffen sich die Wissenschaftler nun neue Hinweise. Für die astrophysikalische Forschung sind in den letzten Jahren sehr hochenergetische Neutrinos in den Mittelpunkt des Interesses gerückt. Diese Neutrinos entstehen dort, so vermuten die Forscher, wo auch die kosmische Strahlung ihre Quelle hat. Neutrinos können zum Beispiel produziert werden, wenn ein schwarzes Loch und ein Begleitstern sich sehr eng umeinander drehen und dabei Materie vom Begleitstern auf das schwarze Loch übergeht. Eine andere mögliche Quelle hochenergetischer Neutrinos könnte in so genannter kalter "dunkler Materie" bestehen. Diese dunkle Materie könnte im Urknall bei der Geburt unseres Universums produziert worden sein. Die Teilchen der dunklen Materie können zusammenstoßen und dabei Neutrinos erzeugen.

Auf ihrem Weg zur Erde werden die Neutrinos von magnetischen oder elektrischen Feldern nicht abgelenkt, so dass man von ihrer Bewegungsrichtung auf ihren Herkunftsort schließen kann. Erreichen sie dann unseren Planeten, durchdringen die Neutrinos - anders als andere kosmische Teilchen - die Erde nahezu ungehindert. Denn Neutrinos gehen äußerst selten Reaktionen mit anderen Elementarteilchen ein. Dieses Phänomen wollen sich die Wissenschaftler zu Nutze machen: Um die Neutrinos nachzuweisen, setzen sie die Erde als Abschirmung gegen alle anderen Teilchensorten ein und richten deshalb ihre Detektoren nach unten.

Die Reaktionsunlust der Neutrinos stellt die Experimentalphysiker aber gleichzeitig vor eine schwere Aufgabe. Um die Teilchen aufzuspüren und ihren Herkunftsort zu bestimmen, müssen sie riesige Detektoren bauen, in denen wenigstens einige der ankommenden Neutrinos eine Reaktion eingehen. Wenn die Neutrinos dann reagieren, erzeugen sie sekundäre, geladene Teilchen - so genannte Myonen. Die Myonen fliegen entlang der ursprünglichen Richtung des Neutrinos und legen dabei eine Strecke von bis zu mehreren Kilometern zurück. Sie strahlen auf diesem Weg ein bläuliches Licht ab. Das Lichtsignal wird von einer Anordnung von bis zu mehreren Tausend hochempfindlicher Photosensoren registriert und genau vermessen. Aus den so gewonnenen Daten lässt sich dann die Herkunft der Neutrinos rekonstruieren. Um mögliche Störungen durch das Tageslicht und durch von oben kommende Teilchen der kosmischen Strahlung auszuschalten, müssen die Detektoren unter Wasser in mehreren Kilometern Tiefe installiert werden.

Erste Erfolge bei der Neutrino-Jagd konnten die Physiker schon mit Neutrino-Teleskopen im Baikal-See in Sibirien und dem Amanda-Detektor am Südpol erzielen. Im Mittelmeer sind drei solcher Experimente im Aufbau, darunter - mit starker Erlanger Beteiligung - das Neutrino-Teleskop Antares, das etwa 0,03 Kubikkilometer groß ist. Um der Neutrino-Astronomie zum Durchbruch zu verhelfen, müssen jedoch Detektoren errichtet werden, die einen Kubikkilometer und mehr umfassen. Am Südpol entsteht bis zum Jahr 2010 in dieser Größenordnung ein Teleskop namens IceCube. IceCube wird den Nordhimmel beobachten, wohingegen das Blickfeld von KM3NeT - das ähnlich groß werden soll - den Südhimmel und insbesondere die zentrale Region unserer Galaxis umfassen wird, wo intensive Neutrino-Quellen vermutet werden.

Weitere Informationen für die Medien:

Prof. Dr. Uli Katz
Tel.: 09131/85-27072
katz@physik.uni-erlangen.de

Ute Missel | idw
Weitere Informationen:
http://www.uni-erlangen.de/

Weitere Berichte zu: Detektoren Neutrinos Strahlung Teilchen

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen
18.08.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Klimawandel: Bäume binden im Alter große Mengen Kohlenstoff
17.08.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie