Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Entdeckung der Langsamkeit im Erdinneren

29.07.2005


Forscher der Universitäten Jena und Bayreuth belegen in aktueller "Science"-Publikation über Diffusionsprozesse im unteren Erdmantel, dass diese Zone heterogener ist als bisher angenommen



Es sind Extremereignisse wie Vulkanausbrüche, Erd- oder Seebeben, die uns gewahr werden lassen, dass sich tief unter unseren Füßen etwas regt. Unsere Ozeane und Kontinente ruhen auf riesigen Platten, die sich einige Zentimeter im Jahr bewegen. An bestimmten Stellen schiebt sich eine Platte unter die andere, taucht in das Erdinnere ab und wird dort bei hohem Druck und Temperaturen quasi recycelt. Bisher hatte man angenommen, dass sich die chemischen Zusammensetzungen der abtauchenden Erdplatten und des umgebenden Mantelgesteins rasch angleichen. "Es war eine gängige Hypothese, dass der untere Erdmantel chemisch relativ homogen ist", sagt Prof. Dr. Falko Langenhorst. Der Mineraloge von der Friedrich-Schiller-Universität Jena und Geowissenschaftler der Universität Bayreuth konnten nun zeigen, dass sich der Stoffaustausch im Erdmantel jedoch extrem langsam vollzieht. "Demzufolge ist diese Mantelzone, die etwa 670 km unter der Erdoberfläche beginnt und bis zu einer Tiefe von 2.900 km reicht, vermutlich heterogener als bisher gedacht", sagt Langenhorst. Er und seine Bayreuther Kollegen haben nun erstmals in Experimenten nachvollzogen, wie schnell sich die Elemente im unteren Mantel vermischen können. Sie ermittelten die Diffusionskoeffizienten von Silikat-Perovskit für verschieden hohe Drücke und Temperaturen. Der untere Erdmantel besteht zu 80 % aus Perovskit, dem häufigsten Mineral der Erde. Die Ergebnisse der Diffusionsexperimente werden in der renommierten Zeitschrift "Science" publiziert und sind gestern (28.07.) in Science Express online veröffentlicht worden.



Um zum Ziel zu gelangen waren aufwendige Hochdruckexperimente nötig, die Dr. Christian Holzapfel, Prof. Dr. David Rubie und Dr. Daniel Frost aus Bayreuth durchführten. Prof. Langenhorst und Dr. Holzapfel bestimmten dann den Elementaustausch im Nanometerbereich mit dem Transmissionselektronenmikroskop. Um die Vorgänge im Erdinneren zu simulieren, waren je zwei zylinderförmige Proben von Silikat-Perovskit mit verschiedenen Konzentrationen von Eisen und Magnesium aneinandergelegt und bis zu 24 Stunden Drücken von 22 bis 26 Gigapascal und Temperaturen zwischen 1.973 und 2.273 Kelvin ausgesetzt worden. "Dabei kommt es zum Ausgleich des Konzentrationsunterschiedes. Denn durch die Brownsche Molekularbewegung bewegen sich die Teilchen, in unserem Falle die Eisen- und Magnesiumionen im Perovskit, von der höheren zur niedrigeren Konzentration", erklärt Langenhorst das zugrundeliegende Prinzip.

Als die Forscher die Diffusionsprofile untersuchten, stellten sie fest, dass der Bereich, in dem die Eisen- und Magnesiumkonzentrationen begonnen hatten, sich einander anzugleichen, nur zwischen 150 bis 1.500 Nanometer groß war. Das bedeutet, dass der Diffusionsprozess trotz hoher Temperaturen, die ihn eigentlich beschleunigen sollten, extrem langsam vonstatten geht, so das Fazit der Wissenschaftler. "Aus der Länge des Profils, das man erhält, wenn die Proben höchstens einen Tag den Extrembedingungen ausgesetzt sind, lässt sich abschätzen, über welche Entfernungen der Diffusionsprozess in geologischen Zeiträumen in der Natur wirklich abläuft", erklärt Langenhorst. Nach den Messungen der Forscher findet in 4,5 Milliarden Jahren, so alt ist unsere Erde, nur ein Austausch im Maßstab von wenigen Metern statt.

Neben der Entdeckung der Langsamkeit des Prozesses machen die Autoren der "Science"-Publikation auch Aussagen darüber, warum die Homogenisierung in der Silikat-Perovskit-Schicht so langsam abläuft. Wie bei allen Prozessen ist der langsamste Reaktionsschritt geschwindigkeitsbestimmend für den Gesamtprozess. Die am langsamsten diffundierenden Spezies im Perovskit sind laut der Wissenschaftler die divalenten Kationen Eisen und Magnesium. Diese "Bummelanten" sorgen dafür, dass der Diffusionsprozess insgesamt langsam abläuft. Damit haben die Forscher ein weiteres Rätsel um die Recycling-Vorgänge im Erdinneren gelöst. "Auch wenn diese Diffusionsprozesse unmerklich langsam vor sich gehen, so gibt es durch die mechanische Umwälzung des Mantels einen steten Stoffaustausch zwischen Erdinnerem und -äußerem, der sicherlich dazu beigetragen hat, dass Leben auf der Erde entstehen konnte", macht Prof. Langenhorst deutlich.

Zur Diffusion:

Diffusion ist der Ausgleich eines Konzentrationsunterschiedes von gasförmigen oder gelösten Stoffen oder Energie, bei dem sich die Teilchen im statistischen Mittel durch Brownsche Molekularbewegung temperaturabhängig von der höheren zur niedrigeren Konzentration bewegen. Die Diffusion ist passiv und unspezifisch, d.h. einzelne Teilchen bewegen sich zufällig und ungerichtet. Bei höheren Temperaturen geht sie jedoch schneller vor sich. Sind in einem Raum Teilchen oder Energie ungleichmäßig verteilt, dann führt die ungeordnete thermische Bewegung der Teilchen mit der Zeit dazu, dass sie in diesem Raum statistisch gleichmäßig verteilt sind, ihre Konzentration also an jedem Messpunkt im Raum gleich hoch ist.

Stefanie Hahn | idw
Weitere Informationen:
http://www.uni-jena.de/

Weitere Berichte zu: Diffusionsprozess Erdinnere Erdmantel Teilchen

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Was macht Korallen krank?
08.12.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Neue Weltkarte zeigt Karstgrundwasserleiter
04.12.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Papstar entscheidet sich für tisoware

08.12.2017 | Unternehmensmeldung

Natürliches Radongas – zweithäufigste Ursache für Lungenkrebs

08.12.2017 | Unternehmensmeldung

„Spionieren“ der versteckten Geometrie komplexer Netzwerke mit Hilfe von Maschinenintelligenz

08.12.2017 | Biowissenschaften Chemie