Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Entdeckung der Langsamkeit im Erdinneren

29.07.2005


Forscher der Universitäten Jena und Bayreuth belegen in aktueller "Science"-Publikation über Diffusionsprozesse im unteren Erdmantel, dass diese Zone heterogener ist als bisher angenommen



Es sind Extremereignisse wie Vulkanausbrüche, Erd- oder Seebeben, die uns gewahr werden lassen, dass sich tief unter unseren Füßen etwas regt. Unsere Ozeane und Kontinente ruhen auf riesigen Platten, die sich einige Zentimeter im Jahr bewegen. An bestimmten Stellen schiebt sich eine Platte unter die andere, taucht in das Erdinnere ab und wird dort bei hohem Druck und Temperaturen quasi recycelt. Bisher hatte man angenommen, dass sich die chemischen Zusammensetzungen der abtauchenden Erdplatten und des umgebenden Mantelgesteins rasch angleichen. "Es war eine gängige Hypothese, dass der untere Erdmantel chemisch relativ homogen ist", sagt Prof. Dr. Falko Langenhorst. Der Mineraloge von der Friedrich-Schiller-Universität Jena und Geowissenschaftler der Universität Bayreuth konnten nun zeigen, dass sich der Stoffaustausch im Erdmantel jedoch extrem langsam vollzieht. "Demzufolge ist diese Mantelzone, die etwa 670 km unter der Erdoberfläche beginnt und bis zu einer Tiefe von 2.900 km reicht, vermutlich heterogener als bisher gedacht", sagt Langenhorst. Er und seine Bayreuther Kollegen haben nun erstmals in Experimenten nachvollzogen, wie schnell sich die Elemente im unteren Mantel vermischen können. Sie ermittelten die Diffusionskoeffizienten von Silikat-Perovskit für verschieden hohe Drücke und Temperaturen. Der untere Erdmantel besteht zu 80 % aus Perovskit, dem häufigsten Mineral der Erde. Die Ergebnisse der Diffusionsexperimente werden in der renommierten Zeitschrift "Science" publiziert und sind gestern (28.07.) in Science Express online veröffentlicht worden.



Um zum Ziel zu gelangen waren aufwendige Hochdruckexperimente nötig, die Dr. Christian Holzapfel, Prof. Dr. David Rubie und Dr. Daniel Frost aus Bayreuth durchführten. Prof. Langenhorst und Dr. Holzapfel bestimmten dann den Elementaustausch im Nanometerbereich mit dem Transmissionselektronenmikroskop. Um die Vorgänge im Erdinneren zu simulieren, waren je zwei zylinderförmige Proben von Silikat-Perovskit mit verschiedenen Konzentrationen von Eisen und Magnesium aneinandergelegt und bis zu 24 Stunden Drücken von 22 bis 26 Gigapascal und Temperaturen zwischen 1.973 und 2.273 Kelvin ausgesetzt worden. "Dabei kommt es zum Ausgleich des Konzentrationsunterschiedes. Denn durch die Brownsche Molekularbewegung bewegen sich die Teilchen, in unserem Falle die Eisen- und Magnesiumionen im Perovskit, von der höheren zur niedrigeren Konzentration", erklärt Langenhorst das zugrundeliegende Prinzip.

Als die Forscher die Diffusionsprofile untersuchten, stellten sie fest, dass der Bereich, in dem die Eisen- und Magnesiumkonzentrationen begonnen hatten, sich einander anzugleichen, nur zwischen 150 bis 1.500 Nanometer groß war. Das bedeutet, dass der Diffusionsprozess trotz hoher Temperaturen, die ihn eigentlich beschleunigen sollten, extrem langsam vonstatten geht, so das Fazit der Wissenschaftler. "Aus der Länge des Profils, das man erhält, wenn die Proben höchstens einen Tag den Extrembedingungen ausgesetzt sind, lässt sich abschätzen, über welche Entfernungen der Diffusionsprozess in geologischen Zeiträumen in der Natur wirklich abläuft", erklärt Langenhorst. Nach den Messungen der Forscher findet in 4,5 Milliarden Jahren, so alt ist unsere Erde, nur ein Austausch im Maßstab von wenigen Metern statt.

Neben der Entdeckung der Langsamkeit des Prozesses machen die Autoren der "Science"-Publikation auch Aussagen darüber, warum die Homogenisierung in der Silikat-Perovskit-Schicht so langsam abläuft. Wie bei allen Prozessen ist der langsamste Reaktionsschritt geschwindigkeitsbestimmend für den Gesamtprozess. Die am langsamsten diffundierenden Spezies im Perovskit sind laut der Wissenschaftler die divalenten Kationen Eisen und Magnesium. Diese "Bummelanten" sorgen dafür, dass der Diffusionsprozess insgesamt langsam abläuft. Damit haben die Forscher ein weiteres Rätsel um die Recycling-Vorgänge im Erdinneren gelöst. "Auch wenn diese Diffusionsprozesse unmerklich langsam vor sich gehen, so gibt es durch die mechanische Umwälzung des Mantels einen steten Stoffaustausch zwischen Erdinnerem und -äußerem, der sicherlich dazu beigetragen hat, dass Leben auf der Erde entstehen konnte", macht Prof. Langenhorst deutlich.

Zur Diffusion:

Diffusion ist der Ausgleich eines Konzentrationsunterschiedes von gasförmigen oder gelösten Stoffen oder Energie, bei dem sich die Teilchen im statistischen Mittel durch Brownsche Molekularbewegung temperaturabhängig von der höheren zur niedrigeren Konzentration bewegen. Die Diffusion ist passiv und unspezifisch, d.h. einzelne Teilchen bewegen sich zufällig und ungerichtet. Bei höheren Temperaturen geht sie jedoch schneller vor sich. Sind in einem Raum Teilchen oder Energie ungleichmäßig verteilt, dann führt die ungeordnete thermische Bewegung der Teilchen mit der Zeit dazu, dass sie in diesem Raum statistisch gleichmäßig verteilt sind, ihre Konzentration also an jedem Messpunkt im Raum gleich hoch ist.

Stefanie Hahn | idw
Weitere Informationen:
http://www.uni-jena.de/

Weitere Berichte zu: Diffusionsprozess Erdinnere Erdmantel Teilchen

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Wasser - der heimliche Treiber des Kohlenstoffkreislaufs?
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Was ist krebserregend am Erionit?
13.01.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Erforschung von Elementarteilchen in Materialien

17.01.2017 | Physik Astronomie

Wasser - der heimliche Treiber des Kohlenstoffkreislaufs?

17.01.2017 | Geowissenschaften

Kieselalge in der Antarktis liest je nach Umweltbedingungen verschiedene Varianten seiner Gene ab

17.01.2017 | Biowissenschaften Chemie