Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Entstehung der Erde exakter erforschen

02.12.2004


Die Entstehung der Erde und anderer Planeten erforscht das Zentrallabor für Geochronologie (ZLG) am Institut für Mineralogie der Universität Münster. Dafür wurde in den letzten Wochen ein hochpräzises Thermionen-Massenspektrometer (TRITON) installiert. Das 700.000 Euro teure, von der Deutschen Forschungsgemeinschaft finanzierte Gerät dient der Messung von Isotopen in Gesteinen der Erde und Meteoriten. Fundamentale Fragen zur Entstehung des Sonnensystems und seiner Planeten können nun in Münster mit nie gekannter Genauigkeit untersucht werden.



Isotope sind Teilchen ein und desselben chemischen Elements, die jedoch unterschiedliche Massen besitzen, also unterschiedlich "schwer" sind. Mit Hilfe des Massenspektrometers kann die Häufigkeit verschiedener Isotope in Gesteinen und Mineralen bestimmt werden. Dies ist für viele Forschungsgebiete von grundlegender Bedeutung. Ganz besonders wichtig sind Isotope in den Geowissenschaften, wo sie zur Bestimmung der Alter von Mineralen und Gesteinen genutzt werden. Daneben können Isotope auch Auskunft über den Herkunftsort von Material geben, aus dem sich durch geologische Prozesse wie Verwitterung, Ablagerung, Aufschmelzung und Auskristallisation neue Gesteine gebildet haben.



Die relativen Anteile der Isotope eines Elements weisen nur sehr geringe, aber systematische Unterschiede auf, die mit dem neuen Massenspektrometer hochpräzise bestimmt werden können. Der technische Fortschritt in der Massenspektrometrie hat in den vergangenen Jahren dazu geführt, dass immer kleinere Proben mit immer besserer Genauigkeit analysiert werden können. Es ist daher möglich, Variationen in der Häufigkeit eines Isotops, die nur 0,001 Prozent betragen, exakt zu analysieren.

Gegenüber den bereits im Zentrallabor für Geochronologie des Institutes für Mineralogie vorhanden Massenspektrometern liefert das neue Gerät Daten mit einer rund fünfmal besseren Genauigkeit. Dieser Fortschritt in der Messgenauigkeit ermöglicht es, neue und fundamentale Erkenntnisse über Prozesse auf der Erde aber auch auf anderen Planeten zu erhalten. Material von anderen Planeten steht den Forschern durch Meteorite zur Verfügung, die immer wieder auf die Erde fallen und aufgesammelt werden.

Von Menschen direkt auf einem anderen Himmelkörper gesammeltes Material steht durch die Apollo-Missionen zur Verfügung, bei denen etwa 360 Kilogramm Mondgestein speziell für Forschungszwecke zur Erde zurück gebracht wurde. Von diesem wertvollen Material können für Untersuchungen nur kleinste Mengen verbraucht werden. Hier bietet das neue Massenspektrometer bessere Möglichkeiten, da seine Messempfindlichkeit gegenüber älteren Geräten deutlich höher ist und schon an geringste Probenmengen kleine Isotopenvariationen nachgewiesen werden können.

Mit dem Massenspektrometer "Triton" sollen am Institut für Mineralogie der Universität Münster Grundlagenforschung betrieben und fundamentale wissenschaftliche Themen bearbeitet werden. Dazu gehören Fragen wie: Wie schnell laufen geologische Prozesse ab? Wie entstanden unser Sonnensystem und seine Planeten und wie entwickelte sich unsere Erde seit ihrer Entstehung?

Norbert Frie | idw
Weitere Informationen:
http://www.zlg-muenster.de/
http://www.uni-muenster.de/Mineralogie/

Weitere Berichte zu: Gestein Isotop Massenspektrometer Mineralogie Planet

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Polarstern ab heute unterwegs nach Spitzbergen, um Rolle der Wolken bei Erwärmung der Arktis zu untersuchen
24.05.2017 | Leibniz-Institut für Troposphärenforschung e.V. (TROPOS)

nachricht Unterschiedliche Erwärmung von Arktis und Antarktis: Forscher sieht Höhenunterschied als Ursache
18.05.2017 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten