Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Meeresforschung aus dem All - Deutsch-indische Fernerkundungsmission MOS nach acht Jahren erfolgreich beendet

02.06.2004


DLR-Umweltsensor MOS lieferte acht Jahre lang wichtige Daten für die Erforschung des größten Ökosystems der Erde


Das letzte Bild des DLR-Umwelt-Sensors MOS zeigt ein Echfarbkomposit des Überfluges über die Nordadria und Mittelitalien am 19. Mai 2004 um 10:15 Ortszeit.



Die Ozeane bedecken rund 70 Prozent der Erde. Die Erforschung des größten Ökosystems auf unserem Globus war während der vergangenen acht Jahre die Aufgabe des vom Deutschen Zentrum für Luft- und Raumfahrt (DLR) entwickelten und gebauten Umwelt-Sensors MOS (Modularer Optischer Scanner), der am 21. März 1996 mit einer Rakete der indischen Raumfahrtorganisation ISRO (Indian Space Research Organisation) vom indischen Weltraumbahnhof Shriharikota nördlich von Madras gestartet war. Der deutsche Umwelt-Sensor MOS an Bord des indischen Satelliten IRS-P3 hat inzwischen die Erde etwa 40.000 mal umrundet und dabei rund 350.000 spektral hoch aufgelöste Aufnahmen an die Bodenstationen des DLR in Neustrelitz, der ISRO, der Europäischen Weltraumorganisation ESA und der amerikanischen Weltraumbehörde NASA übermittelt. Darüber hinaus wurden über 3.000 spezielle Messungen zur Sensorkalibration, darunter Sonnen- und Mondmessungen, durchgeführt. Während der achtjährigen Missionsdauer hat der deutsche Umwelt-Sensor einzigartige Erkenntnisse über den ökologischen Zustand von Ozeanen und Küstengewässern erbracht. Die letzten wissenschaftlichen Daten übermittelte MOS am 25. April 2004, zurzeit werden nur noch technologische Daten zur Überprüfung des Sensorzustandes übermittelt.



Die Mission ist nun zu Ende gegangen, da der Satellit alle Treibstoffvorräte aufgebraucht hat und keine Bahnkorrekturen mehr möglich sind. Er hat inzwischen seine ursprüngliche sonnensynchrone Bahn um die Erde in einer Höhe von 820 Kilometern bereits verlassen. Aufgrund seiner geringen Masse von 600 Kilogramm und Außenmaße von rund 1,6 Meter wird der indische Satellit mit dem deutschen Umweltsensor in einigen Jahren beim Eintritt in die Erdatmosphäre voraussichtlich komplett verglühen.

Deutscher Umweltsensor MOS - Daten für die Meeresforschung

Das DLR entwickelte und baute für diese Mission das abbildende Spektrometer MOS. Diese Technologie kam mit MOS erstmals auf einem Erdbeobachtungssatelliten zum Einsatz und stellte neuartige, spektral hoch aufgelöste Daten speziell zur Untersuchung des ökologischen Zustandes von Ozeanen und Küstengewässern bereit. Mit diesen Daten war es möglich, mit verbesserten Auswertungsverfahren die Mischung von verschiedenen Inhaltsstoffen in trüben Küstengewässern genauer zu untersuchen und Aussagen über den Gehalt an Phytoplankton, anorganischen Schwebstoffen sowie organischen Abbauprodukten abzuleiten. Diese Ergebnisse sind für die Zustandsbeurteilung und das Management der Ökosysteme von wesentlicher Bedeutung. Damit waren grundlegende wissenschaftliche Vorarbeiten für andere Missionen, so zum Beispiel die des ESA-Umweltsatelliten ENVISAT, sowie methodische Vergleichsmessungen mit der NASA-Mission SeaWiFS möglich. Die entwickelten Verfahren werden nunmehr mit Daten des MERIS-Instrumentes auf ENVISAT operationell eingesetzt.

Mit der gemeinsamen Mission von DLR und ISRO konnte sehr erfolgreich ein wissenschaftliches Experiment verwirklicht werden: So stellen die acht Jahre Einsatz im Orbit einen Langzeitrekord für ein deutsches Fernerkundungsinstrument dar. Dies ist auch im internationalen Vergleich ein Spitzenwert. Erstmals konnten eine Reihe spezieller Orbit-Manöver für Kalibrationsmessungen zur Sonne und zum Mond in der Klasse der Kleinsatelliten demonstriert werden. Im Rahmen dieses DLR-Experimentes wurde ein vernetztes System von Empfangs- und Prozessierungsstationen über mehrere Jahre aufgebaut (DLR/Neustrelitz, ESA/Gran Canaria, ISRO/Hyderabad, NASA/Wallops Island).

Die von allen Bodenstationen empfangenen Daten wurden im Langzeit-Archiv des Deutschen Fernerkundungsdatenzentrums (DFD) des DLR gespeichert und den Forschergruppen zugänglich gemacht. International beteiligten sich über 100 Wissenschaftler aus Europa, Indien, den USA und Kanada am Forschungsprogramm der Mission. Die umfangreichen Ergebnisse und Erkenntnisse wurden u.a. auf vier speziellen Workshops beim DLR in Berlin diskutiert und auf Konferenzen veröffentlicht.

Durch die erreichten wissenschaftlichen Ergebnisse und die starke internationale Beachtung kann die Mission MOS/IRS-P3 als die erfolgreichste wissenschaftliche deutsche Fernerkundungsmission angesehen werden. Sie ist zudem ein gutes Beispiel für die fruchtbare Kooperation des DLR mit der ISRO, die vor rund zwölf Jahren mit ersten Gesprächen begonnen hatte.

Ansprechpartner:

Andreas Schütz, Tel.: 030 / 67055-130, Fax: -120
Dr. Andreas Neumann, Tel: 030 / 67055-640, Fax: -642

Andreas Schütz | DLR
Weitere Informationen:
http://www.dlr.de

Weitere Berichte zu: Fernerkundungsmission ISRO Küstengewässer MOS Umwelt-Sensor Ökosystem

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Der Salzwasser-Wächter auf der Darßer Schwelle
19.09.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie