Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Afrikas Rauch dringt bis nach Südamerika vor

25.01.2012
Vegetationsfeuer in Afrika beeinflussen die Atmosphäre im Amazonasbecken während der Regenzeit.

Das schlussfolgern brasilianische und deutsche Forscher aus Untersuchungen in Brasilien. Zum ersten Mal war der Transport von Rauchpartikeln aus Afrika in seiner vertikalen Ausdehnung durch eine Langzeitmessung mit einem am Leibniz-Institut für Troposphärenforschung (IfT) entwickelten Lasermessgerät dokumentiert worden.

Der Einfluss der afrikanischen Vegetationsfeuer sei am deutlichsten zwischen Januar und April zu spüren, da dann die Feuer in Zentralafrika am stärksten seien und die Passatwinde die Rauchpartikel direkt nach Südamerika transportierten, schreiben die Forscher im Fachblatt Geophysical Research Letters.

Das Amazonasbecken mit einer Gesamtfläche von über sechs Millionen Quadratkilometern beherbergt den größten tropischen Regenwald der Welt. Gemessen an seiner globalen Bedeutung ist im Amazonasgebiet jedoch noch relativ wenig über luftgetragene Partikel, die so genannten Aerosole, bekannt. Diese sind aber eine wichtige Komponente im lebenswichtigen Kreislauf von Wolken- und Niederschlagsbildung des Amazonasregenwaldes. Wissenschaftler des IfT sowie der brasilianischen Universitäten Sao Paulo, Diadema und Manaus hatten daher von Januar bis November 2008 atmosphärische Messungen im zentralen Amazonasbecken durchgeführt. Dazu wurde erstmals ein Lasermessgerät 60 Kilometer nördlich von Manaus installiert, das Daten zu Verteilung und Eigenschaften der Aerosole bis in 20 km Höhe über der Messstation liefert.

Der Luft über dem Amazonasgebiet wurde nachgesagt, sie sei in der Regenzeit noch so natürlich wie einst vor Beginn des Industriezeitalters. „Wir haben daher einen Standort mitten im Amazonas ausgewählt, der auch von der Millionenstadt Manaus nicht beeinflusst wurde, da die Luft meist aus der entgegen gesetzten Richtung kam“, berichtet Dr. Dietrich Althausen vom IfT, der den Messcontainer vor Ort installiert hat.

„Allerdings haben die hohen Temperaturen und die hohe Luftfeuchtigkeit die Technik arg strapaziert. Nebel, niedrige Wolken und häufige Niederschläge machen es sehr schwer, im Amazonasregenwald die untersten Luftschichten vom Boden aus zu untersuchen.“ Das von den Leipziger Troposphärenforschern entwickelte LIDAR-System namens PollyXT sendet dazu Laserimpulse mit Wellenlängen von 355, 532 und 1064 Nanometern aus, die von in der Atmosphäre schwebenden Partikeln reflektiert werden.

Durch die Drehung der Schwingungsrichtung des Laserlichts bei der Reflektion, der sogenannten Depolarisation, lässt sich Art und Herkunft der Aerosole bestimmen. Für die Wissenschaftler ist diese Charakterisierung besonders wichtig, da sich so zwischen natürlichen Quellen (z.B. Staub aus der Sahara) und vom Menschen verursachten Aerosolquellen (z.B. Rauch von Vegetationsfeuern) unterscheiden lässt.

Auch wenn die Luft über der Messstation eigentlich hätte sehr sauber sein müssen, da sich keine Industrie in der direkten Nähe befand und die Luftmassen vom ca. 1200 km entfernten Atlantik nur über tropischen Regenwald zum Messstandort zogen, beobachteten die Wissenschaftler dennoch jede Menge Partikel. Bei einem Drittel der LIDAR-Messungen während der Regenzeit von insgesamt 2500 Messstunden registrierten sie den Transport von Rauch- und Mineralstaubpartikeln aus Afrika. Etwa zehn Tage brauchen die Teilchen für ihren Weg über den Atlantik in den untersten drei Kilometern der Troposphäre von Kontinent zu Kontinent.

Dass Mineralstaub aus der Sahara über den Atlantik gelangt und dort den Amazonas düngt, ist schon lange bekannt. Seit Jahren untersuchen auch IfT-Forscher diese Transportprozesse. So gab es beispielsweise im Rahmen der SAMUM-Messkampagne umfangreiche Experimente in Marokko und auf den Kapverdischen Inseln. „Überrascht waren wir aber, wie groß der Anteil der Rauchpartikel von afrikanischen Vegetationsfeuern während der Regenzeit im Amazonas ist“, erklärt Holger Baars vom IfT.

„In der Hälfte aller Fälle, in denen wir Partikel aus Afrika registrierten, waren Rauchpartikel der Hauptbestandteil in der Atmosphäre. Die Luftmassen aus der Sahara reichern sich also auf ihrem Weg südwärts über den Savannen Afrikas mit Partikeln an, die durch größtenteils vom Menschen verursachte Brände in die Luft gelangen.“ Damit könnten Vegetationsbrände in Afrika auch eine wichtige Rolle für die Wolkenbildung über dem Amazonasregenwald spielen – zumindest in der Regenzeit zwischen Januar und April. In der Trockenzeit, die von der Jahreszeit her etwa dem Sommer auf der Nordhalbkugel entspricht, dominieren dagegen Partikel aus Waldbränden im Amazonasbecken.

„Selbst mitten im Amazonas ist die Luft also inzwischen größtenteils alles andere als noch natürlich“, resümiert Holger Baars. Allerdings sind noch weitere Untersuchungen notwendig, um die winzigen Aerosolpartikel, die aus Afrika die Amazonasregion erreichen und dort als Keime für Wolkentropfen fungieren, ausreichend zu charakterisieren und dadurch deren Bedeutung für das Klima besser abschätzen und die Klimamodelle verbessern zu können. Denn diese Partikel haben großen Einfluss auf den Strahlungshaushalt, die Wolkenbildung und auch auf die Niederschläge über dem tropischen Atlantik und dem Amazonasbecken.

Publikation:
Baars, H., A. Ansmann, D. Althausen, R. Engelmann, P. Artaxo, T. Pauliquevis, and R. Souza (2011), Further evidence for significant smoke transport from Africa to Amazonia, Geophys. Res. Lett., 38, L20802, doi:10.1029/2011GL049200.
http://www.agu.org/pubs/crossref/2011/2011GL049200.shtml
Die Untersuchungen wurden von der Europäischen Kommission im Rahmen des Forschungsprojektes EUCAARI (European Integrated project on Aerosol Cloud Climate and Air Quality Interactions) gefördert.
Weitere Infos:
Holger Baars / Dr. Dietrich Althausen/ Dr. Albert Ansmann/ Dr. Ronny Engelmann
Leibniz-Institut für Troposphärenforschung (IfT), AG Optische Fernmessungen
Tel. 0341-235-2411, -2460, -2149 , -2411
http://lidar.tropos.de/en/staff/althausen.html
http://lidar.tropos.de/en/staff/baars.html
http://lidar.tropos.de/en/staff/ansmann.html
http://lidar.tropos.de/en/staff/engelmann.html
Links:
Aerosol Raman lidar measurements in the Amazon rain forest
in: Zwei-Jahresbericht 2008/2009 (S. 75-77).
http://www.tropos.de/news/presse/jb2009/ift_jb2008_2009_articles.pdf
Worldwide observations with the portable Raman lidar systems (Polly)
http://polly.tropos.de/lidar/index.php
Daten aus Manaus von 2008:
http://polly.tropos.de/lidar/lidarzeit.php?Ort=Manaus&lambda=1064&lidar=PollyXT_IfT
DFG-Messkampagne SAMUM:
http://samum.tropos.de
Das Leibniz-Institut für Troposphärenforschung ist Mitglied der Leibniz-Gemeinschaft. Ihr gehören zurzeit 87 Forschungsinstitute und wissenschaftliche Infrastruktureinrichtungen für die Forschung sowie zwei assoziierte Mitglieder an. Die Ausrichtung der Leibniz-Institute reicht von den Natur-, Ingenieur- und Umweltwissenschaften über die Wirtschafts, Sozial- und Raumwissenschaften bis hin zu den Geisteswissenschaften. Leibniz-Institute bearbeiten gesamtgesellschaftlich relevante Fragestellungen strategisch und themenorientiert. Dabei bedienen sie sich verschiedener Forschungstypen wie Grundlagen-, Groß- und anwendungsorientierter Forschung. Sie legen neben der Forschung großen Wert auf wissenschaftliche Dienstleistungen sowie Wissenstransfer in Richtung Politik, Wissenschaft, Wirtschaft und Öffentlichkeit. Sie pflegen intensive Kooperationen mit Hochschulen, Industrie und anderen Partnern im In- und Ausland. Das externe Begutachtungsverfahren der Leibniz-Gemeinschaft setzt Maßstäbe. Jedes Leibniz-Institut hat eine Aufgabe von gesamtstaatlicher Bedeutung. Bund und Länder fördern die Institute der Leibniz-Gemeinschaft daher gemeinsam. Die Leibniz-Institute beschäftigen etwa 16.800 Mitarbeiterinnen und Mitarbeiter, davon sind ca. 7.800 Wissenschaftler, davon wiederum 3.300 Nachwuchswissenschaftler. Der Gesamtetat der Institute liegt bei mehr als 1,4 Mrd. Euro, die Drittmittel betragen etwa 330 Mio. Euro pro Jahr.

Tilo Arnhold | IfT-News
Weitere Informationen:
http://www.leibniz-gemeinschaft.de

Weitere Nachrichten aus der Kategorie Geowissenschaften:

nachricht Klimawandel: Bäume binden im Alter große Mengen Kohlenstoff
17.08.2017 | Universität Hamburg

nachricht Neue Grundlagen für die Verbesserung von Klima-und Vegetationsmodellen
08.08.2017 | Max-Planck-Institut für Biogeochemie

Alle Nachrichten aus der Kategorie: Geowissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten