Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tumorzellen zum Selbstmord überreden

09.07.2009
Heidelberger Pathologe Privatdozent Dr. Wilfried Roth mit dem Rudolf-Virchow-Preis ausgezeichnet

Mit welchen molekularen Botschaften kann man Tumorzellen zum Rückzug bewegen? Forscher des Pathologischen Instituts am Universitätsklinikum Heidelberg und des Deutschen Krebsforschungszentrums (DKFZ) haben Signalketten entschlüsselt, die das Selbstmordprogramm von Tumorzellen beeinflussen und neue Ansatzpunkte für eine Therapie aufzeigen.

Für seine Arbeiten zu diesem Thema erhielt Privatdozent Dr. Wilfried Roth, Leiter einer von der Deutschen Krebshilfe geförderten Nachwuchsgruppe am DKFZ und Pathologischen Institut, den mit 5.000 Euro dotierten Rudolf-Virchow-Preis. Die Auszeichnung wurde bei der Jahrestagung der Deutschen Gesellschaft für Pathologie vom 4. - 7. Juni 2009 in Freiburg verliehen.

Apoptose heißt das Zauberwort: Normalerweise besitzt jede Zelle ein Programm, das unter entsprechenden Bedingungen den Tod der Zelle auslöst (Apoptose). Eine elegante Methode, Tumorzellen zum Verschwinden zu bringen, ist die Möglichkeit, dieses Selbstmordprogramm in Gang zu setzen. Die molekularen Abläufe der Apoptose sind jedoch äußerst komplex und können an vielen Stellen gestört sein. Besonders Tumorzellen entwickeln zahlreiche Strategien, um sich dem Zelltod zu entziehen.

Im Pathologischen Institut und im DKFZ tätig

Bereits während seines Studiums in Tübingen beschäftigte sich Wilfried Roth in seiner Doktorarbeit mit dem Thema Apoptose. Im Rahmen eines von der Deutschen Forschungsgemeinschaft geförderten Forschungsaufenthaltes in den USA (Burnham Institute, San Diego) konnte er seine Kenntnisse hierzu weiter vertiefen. Seit 2004 ist er am Pathologischen Institut des Universitätsklinikums Heidelberg (Ärztlicher Direktor: Professor Dr. Peter Schirmacher) tätig, wo er sich auch habilitierte. Neben seiner Arbeit als Oberarzt leitet der 39-jährige exzellente Forscher seit 2005 die von der Deutschen Krebshilfe geförderte Max-Eder-Nachwuchsgruppe am Deutschen Krebsforschungszentrum.

"Forschung ist natürlich Teamwork", sagt Wilfried Roth, "und da ich mich für den Virchow-Preis mit mehreren Veröffentlichungen beworben habe, ist die Arbeit zahlreicher Personen in diese Forschungsergebnisse geflossen." Seine Mitarbeiter arbeiten sowohl am Pathologischen Institut als auch am Deutschen Krebsforschungszentrum.

Neue Therapieansätze durch Eingreifen in die Signalketten

Die Wissenschaftler um Roth versuchen, entscheidende Regulationsschritte im Ablauf des Zelltodes ausfindig zu machen, um dort mit neuen Wirkstoffen das Tumorwachstum zu bekämpfen. Dabei kann bei jeder Tumorart ein anderer Schritt verändert sein. Hirntumoren zum Beispiel produzieren ein Protein, das den Zelltod hemmt. Dadurch sind sie schwerer zu therapieren. Verhindert man die Bildung dieses Proteins, so kann die Zelltodkaskade wieder ablaufen.

In Nierentumoren ist dagegen ein bestimmter, den Zelltod auslösender Rezeptor, vermehrt vorhanden. Roth und seine Mitarbeiter sehen hier die Möglichkeit, mit Wirkstoffen, die gezielt an diesem Todesrezeptor angreifen, die Therapie wirksamer zu machen.

Aussagekräftige Prognosefaktoren für die Therapieentscheidung

Patienten mit einem voraussichtlich schwereren Verlauf der Krebserkrankung können von zusätzlichen, z.T. neuen Therapien profitieren. Unabhängige Prognosefaktoren helfen, sich für solche adjuvante Therapiestudien zu entscheiden. Die Forschergruppe um Roth identifizierte bei Patienten mit einem Nierentumor Faktoren in der Apoptose-Signalkette, die den Verlauf und die Sterblichkeit anzeigen können: Das Protein DcR3 (Decoy Receptor 3) bindet und inaktiviert dadurch einen Botenstoff, der den Zelltod auslöst. DcR3 kann im Blut gemessen werden und weist bei erhöhten Werten auf eine ungünstige Prognose hin. Ähnliches gilt für einen Todesrezeptor und den an ihn bindenden Botenstoff, deren Vorkommen im Tumorgewebe überprüft wird.

Rudolf-Virchow-Preis: Höchste Auszeichnung für Pathologen

Der Rudolf-Virchow-Preis ist nach dem Gründer der Pathologie benannt. Er wird seit 1980 jährlich von der Deutschen Gesellschaft für Pathologie an einen Pathologen unter 40 Jahren verliehen und stellt die höchste Auszeichnung für Pathologen in Deutschland dar.

Literatur:
Macher-Goeppinger S, Aulmann S, Tagscherer KE, Wagener N, Haferkamp A, Penzel R, Brauckhoff A, Hohenfellner M, Sykora J, Walczak H, Teh BT, Autschbach F, Herpel E, Schirmacher P, Roth W Prognostic value of Tumor Necrosis Factor-Related Apoptosis-inducing ligand (TRAIL) and TRAIL receptors in renal cell cancer. Clinical Cancer Research 15, 650-659, 2009.

Tagscherer KE, Fassl A, Campos B, Farhadi M, Kraemer A, Boeck BC, Macher-Goeppinger S, Radlwimmer B, Wiestler OD, Herold-Mende C, Roth W Apoptosis-based treatment of glioblastoma with ABT-737, a novel small molecule inhibitor of Bcl-2 family proteins. Oncogene 27, 6646-56, 2008.

Weitere Informationen:
www.klinikum.uni-heidelberg.de/Pathologie.106594.0.html
Ansprechpartner:
PD Dr. med. Wilfried Roth
Pathologisches Institut
Universitätsklinikum Heidelberg
Im Neuenheimer Feld 220/221
69120 Heidelberg
Tel: 06221 / 56-26 47
Email: Wilfried.Roth(at)med.uni-heidelberg.de
Oder:
Molekulare Neuro-Onkologie
Deutsches Krebsforschungszentrum (DKFZ)
Im Neuenheimer Feld 280
69120 Heidelberg
Universitätsklinikum und Medizinische Fakultät Heidelberg
Krankenversorgung, Forschung und Lehre von internationalem Rang
Das Universitätsklinikum Heidelberg ist eines der größten und renommiertesten medizinischen Zentren in Deutschland; die Medizinische Fakultät der Universität Heidelberg zählt zu den international bedeutsamen biomedizinischen Forschungseinrichtungen in Europa. Gemeinsames Ziel ist die Entwicklung neuer Therapien und ihre rasche Umsetzung für den Patienten. Klinikum und Fakultät beschäftigen rund 7.000 Mitarbeiter und sind aktiv in Ausbildung und Qualifizierung. In mehr als 40 Kliniken und Fachabteilungen mit 1.600 Betten werden jährlich rund 500.000 Patienten ambulant und stationär behandelt. Derzeit studieren ca. 3.100 angehende Ärzte in Heidelberg; das Heidelberger Curriculum Medicinale (HeiCuMed) steht an der Spitze der medizinischen Ausbildungsgänge in Deutschland. (Stand 12/2008) www.klinikum.uni-heidelberg.de
Bei Rückfragen von Journalisten:
Dr. Annette Tuffs
Presse- und Öffentlichkeitsarbeit des Universitätsklinikums Heidelberg
und der Medizinischen Fakultät der Universität Heidelberg
Im Neuenheimer Feld 672
69120 Heidelberg
Tel.: 06221 / 56 45 36
Fax: 06221 / 56 45 44
E-Mail: annette.tuffs(at)med.uni-heidelberg.de

Dr. Annette Tuffs | idw
Weitere Informationen:
http://www.klinikum.uni-heidelberg.de/presse

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe
22.09.2017 | Deutsche Forschungsgemeinschaft (DFG)

nachricht Millionen für die Krebsforschung
20.09.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie