Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tiefe Einsichten ins Gehirn: Zülch-Preis 2015

02.09.2015

Winfried Denk entwickelt neue Mikroskopie-Methoden und revolutioniert damit die Neurowissenschaften

Wer das Gehirn verstehen will, muss den mikroskopisch kleinen Schalteinheiten im Gehirn bei der Arbeit zuschauen können – den Nervenzellen. Mit den herkömmlichen Lichtmikroskopen geht das nicht. Erst die Mikroskope von Winfried Denk und seinen Kollegen machen die Gestalt von Nervenzellen und ihre Veränderungen im intakten Gehirn sichtbar. Neurowissenschaftler können dadurch heute Nervenzellen im lebenden Gehirn beobachten und dreidimensionale Bilder von Nervengewebe mit all seinen synaptischen Verbindungen erzeugen. Für diese bahnbrechenden Arbeiten erhält Winfried Denk den mit 50.000 Euro dotierten Zülch-Preis. Der Preis wird am 4. September 2015 in Köln verliehen.


Winfried Denk, Direktor am Max-Planck-Institut für Neurobiologie wird für seine Forschungsarbeiten mit dem diesjährigen Zülch-Preis ausgezeichnet.

© MPI für Neurobiologie

Mit dem Lichtmikroskop fing alles an: Einfache Glaslinsen und einfaches Sonnenlicht genügten den Forschern des 17. Jahrhunderts, um erstmals Zellen beobachten zu können. Heute arbeiten schon Schüler mit Lichtmikroskopen, wenn sie Zellen im Biologie-Unterricht beobachten sollen. Doch Wissenschaftler stoßen mit Lichtmikroskopen schnell an ihre Grenzen: Nervenzellen beispielsweise erscheinen oft unscharf, weil umgebendes Nervengewebe das Licht im Mikroskop zu stark streut. Details bleiben so verborgen. Auch die Aktivität der Zellen lässt sich mit Lichtmikroskopen nicht sichtbar machen.

Mit dem Zwei-Photonen-Fluoreszenzmikroskop, das Winfried Denk in den späten 1980er Jahren gemeinsam mit Jim Strickler und Watt Webb an der Cornell Universität in den USA entwickelte, können Forscher dagegen Nervenzellen mit bis dahin unerreichter Klarheit untersuchen. Aber nicht nur das: Mit einem Zwei-Photonen-Mikroskop können sie die Zellen sogar im lebenden Gehirn und über lange Zeitspannen hinweg beobachten. Ein weiterer Vorteil: Das Licht dringt tief ins Gewebe ein und macht auch Zellen sichtbar, die bis zu einem Millimeter unter der Oberfläche liegen. Das ist etwa 20-mal tiefer als ein herkömmliches Lichtmikroskop in Nervengewebe eindringen kann.

Inzwischen erforschen Neurowissenschaftler weltweit mit Zwei-Photonen-Mikroskopen die Funktionsweise von Nervenzellen. Ohne die Technik wären viele Erkenntnisse über das Gehirn der letzten Jahre nicht möglich gewesen – eine Entwicklung, die zu der Geburtsstunde der Zwei-Photonen-Mikroskopie vor 25 Jahren nicht absehbar war.

Zwei-Photonen-Mikroskope sind eine weiterentwickelte Form der Fluoreszenzmikroskopie. Herkömmliche Fluoreszenzmikroskope verwenden kurzwelliges blaues oder ultraviolettes Licht und regen damit Farbstoffe in der Zelle zum Leuchten an. Dadurch wird die Zelle für den Beobachter sichtbar. Gleichzeitig schädigt das energiereiche Licht aber auch die Zelle. Beim Zweiphotonen-Fluoreszenzmikroskop wird dagegen energiearmes rotes oder infrarotes Laserlicht verwendet. Lichtteilchen (Photonen) mit dieser Wellenlänge besitzen jedes für sich jedoch nicht genug Energie, um den Farbstoff anzuregen. Wenn aber zwei Photonen gleichzeitig auf ein Farbstoffmolekül treffen, addiert sich ihre Energie und bringt den Farbstoff zum Leuchten. Auf diese Weise können Forscher die bäumchenartigen Fortsätze von Nervenzellen mit ihren Synapsen analysieren. Farbstoffe, die nur in aktiven Nervenzellen zum Leuchten angeregt werden, verraten den Wissenschaftlern darüber hinaus, wann und wie stark eine Zelle elektrisch aktiv ist.

Winfried Denk interessiert sich jedoch nicht nur für einzelne Nervenzellen und ihre Aktivität, er möchte auch die Verknüpfungen der Zellen untereinander aufklären. Sein Ziel ist es, ein komplettes Verschaltungsdiagramm des Gehirns einer Maus zu erstellen, das Konnektom. Dafür hat er vor rund zehn Jahren das serielle Raster-Elektronenmikroskop entwickelt („serial block-face“- Raster-Elektronenmikroskop). Im Unterschied zum Zwei-Photonen-Mikroskop beleuchtet es das Gewebe nicht mit Licht, sondern mit einem Elektronenstrahl. Dadurch kann das serielle Raster-Elektronenmikroskop noch kleinere Details sichtbar machen, allerdings nicht in lebendem Gewebe.

Die Probe wird zunächst in einem speziellen Verfahren präpariert und anschließend von einem Elektronenstrahl abgescannt. Ein Schneide-Automat entfernt anschließend eine nur wenige Tausendstel Millimeter dünne Gewebeschicht für das nächste Bild. Aus den zweidimensionalen Bildern der einzelnen Ebenen können die Forscher am Computer ein dreidimensionales Bild zusammensetzen.

Denk ist es damit gelungen, die mühsame und fehleranfällige Produktion der Schnittserien zu automatisieren. Mit dieser Methode haben er und seine Kollegen bereits Schaltkreise der Netzhaut im Auge einer Maus analysiert. Allein in einem Netzhaut-Würfel mit einem Zehntel Millimeter Kantenlänge entdeckten die Wissenschaftler knapp 1000 Nervenzellen mit rund einer halben Million Verbindungen. Angesichts dieser Zahlen lässt sich leicht vorstellen, wie komplex das Konnektom des 200.000-mal größeren Mäusegehirns ist. Nur mit einem solchen Schaltplan können Wissenschaftler aber die Funktionsweise des Gehirns entschlüsseln und Erkrankungen des Nervensystems besser verstehen.

Winfried Denk ist in München geboren und hat in seiner Heimatstadt an der Ludwig-Maximilians-Universität sowie in Zürich (Schweiz) an der Eidgenössisch Technischen Hochschule Physik und Biophysik studiert. Seine Doktorarbeit schrieb er an der Cornell University in den USA im Labor von Watt W. Webb. Nach einem kurzen Aufenthalt im IBM Forschungslabor in Rueschlikon (Schweiz) arbeitete er mehrere Jahre in den Bell Laboratories im US-Bundesstaat New Jersey. 1999 kehrte er nach Deutschland zurück und wurde Direktor am Max-Planck-Institut für medizinische Forschung in Heidelberg. Seit 2002 ist er Honorarprofessor an der Universität Heidelberg. Inzwischen ist er Direktor der Abteilung Elektronen-Photonen-Neuronen am Max-Planck-Institut für Neurobiologie in Martinsried bei München.

Die Verleihung des K. J. Zülch-Preises 2015 findet am 4. September von 10:00 bis 12:00 Uhr im Hansasaal des Historischen Rathauses zu Köln statt. Im Anschluss an die Laudatio von Bert Sakmann vom Max-Planck-Institut für Neurobiologie in Martinsried berichtet Winfried Denk über Methoden, mit denen sich Schaltkreise des Gehirns kartieren und entschlüsseln lassen.

Kontakt

Francoise Kierdorf
Büroleitung

Max-Planck-Institut für Stoffwechselforschung, Köln
Telefon: +49 221 4726-336

Fax: +49 221 4726-337

E-Mail: kierdorf@sf.mpg.de

Francoise Kierdorf | Max-Planck-Institut für Stoffwechselforschung, Köln
Weitere Informationen:
http://www.mpg.de/9380173/zuelch-preis-2015-winfried-denk

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Ausschreibung des Paul-Martini-Preises 2018 für klinische Pharmakologie
19.09.2017 | Paul-Martini-Stiftung (PMS)

nachricht EU fördert exzellente Nachwuchsforschung: Zehn Auszeichnungen gehen nach Nordrhein-Westfalen
15.09.2017 | Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie