Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Riesenerfolg mit künstlichen Genschaltern - Heidelberger Studenten punkten bei internationalem Wettbewerb

09.11.2009
Beim hochkarätigen internationalen Wettbewerb in synthetischer Biologie (iGEM) des Massachusetts Institute of Technology in Boston erzielte das Heidelberger Studententeam einen sensationellen zweiten Platz in der Gesamtwertung.

Außerdem erhielten das Team unter der Leitung von Professor Roland Eils vom Deutschen Krebsforschungszentrum und der Universität Heidelberg Preise für den besten neuen technischen Standard und für den besten Internetauftritt. Damit ließen die Heidelberger sämtliche Teams aller Spitzenuniversitäten aus den USA und Asien hinter sich.

iGEM - dieses Kürzel steht für den weltweit bedeutendsten Studentenwettbewerb in synthetischer Biologie, die "International Competition of Genetically Engineered Machines". Über 110 Teams der weltbesten Universitäten mit insgesamt mehr als 1100 Studenten hat der bedeutendste Wettbewerb in diesem jungen und zukunftsträchtigen Wissenschaftszweig am vergangenen Wochenende nach Boston gelockt.

Heidelberg schaffte es dort auf einen sensationellen zweiten Platz in der Gesamtwertung und wurde nur vom Team aus Cambridge (UK) übertroffen, das sich den ersten Gesamtpreis sicherte. Außerdem konnten sich die Heidelberger den Preis für den besten neuen technischen Standard und den besten Internetauftritt sichern. Bereits im letzten Jahr hatte das Heidelberger Team gleich bei seiner ersten Teilnahme drei Spezialpreise gewonnen, wurde daher dieses Jahr von Anfang an als Favorit gehandelt und konnte dieser Rolle tatsächlich souverän gerecht werden.

Ähnlich wie bei der Konstruktion eines Flugzeugs aus verschiedenen vorgefertigten Bauteilen verwendet die synthetische Biologie einfache Gen-Bausteine und kombiniert diese zu neuen komplexen Systemen mit bestimmten Funktionen. Die Heidelberger hatten sich dieses Jahr ein besonders ehrgeiziges Ziel gesetzt: Statt mit vergleichsweise einfach strukturierten Bakterien zu arbeiten, versuchten sie sich am Design künstlicher Genschalter für Säugetierzellen. "Die Arbeit mit Säugetierzellen ist für uns in Heidelberg besonders wichtig, um die Methoden der synthetische Biologie auch auf die Krebsforschung ausweiten zu können", erklärt Projektleiter Roland Eils. Mit dem preisgekrönten Projekt haben die Heidelberger Wissenschaftler einen wesentlichen Grundstein gelegt, um die Konzepte der synthetischen Biologie auch auf Zellen des Menschen zu übertragen.

Genschalter, wissenschaftlich Promotoren genannt, spielen eine zentrale Rolle bei der Steuerung aller Aktivitäten einer Zelle und stehen daher auch im Mittelpunkt des Interesses der synthetischen Biologie. Als Genschalter werden Bereiche im Erbgut bezeichnet, die eine ganze Reihe von Andockstellen für verschiedene Steuerungsproteine enthalten. Binden sich diese Proteine an die vorgesehenen Andockstellen, so ändert sich die Erbgutstruktur und das betreffende Gen kann abgelesen werden. Promotoren steuern, wann und in welchem Zelltyp das jeweilige Gen abgelesen wird. Gezieltes An- und Abschalten eines spezifischen Gens eröffnet somit die Möglichkeit, gezielt in zelluläre Signalwege einzugreifen, z.B. um fehlgeleitete Prozesse in Krebszellen zu korrigieren.

Die 13 Teilnehmer des Heidelberger Teams arbeiten seit Februar in Laborräumen des BioQuant-Instituts am "Spybricks"-Projekt. Zunächst war das Ziel der Studenten, neue Promotorensequenzen nach dem Zufallsprinzip zu generieren und zu erproben, wie stark diese neu geschaffenen Schalter ein Gen aktivieren können. Dazu entwickelte das Team ein neues chemisches Syntheseverfahren, bei dem von jedem Ansatz gleich mehrere DNA-Sequenzen hergestellt werden, die sich in der Abfolge ihrer Einzelbausteine leicht unterscheiden. Anschließend wurden die verschiedenen Versionen in der Zelle auf ihre Funktionsfähigkeit überprüft. In einem weiteren Teilprojekt gestaltete das Heidelberger Team computergestützt solche Promotoren, an die ganz bestimmte Steuerungsproteine andocken können. Damit sollen Genschalter geschaffen werden, die nur auf genau definierte Stimuli der Zelle reagieren. Auch hier konnten die Heidelberger Wettbewerbsteilnehmer die Funktion der Schalter bereits an Zellexperimenten überprüfen.

Die Sequenzen aller neu synthetisierten Genschalter wurden in einer Bibliothek zusammengestellt, die eine Art "biologischen Baukasten" bildet, auf den nun alle Wissenschaftler aus dem Bereich der synthetischen Biologie zugreifen können.

Das "Spybricks"-Projekt sowie die Promotoren-Bibliothek findet sich im Internet unter: http://2009.igem.org/Team:Heidelberg

Dr. Stefanie Seltmann | idw
Weitere Informationen:
http://2009.igem.org/Team:Heidelberg

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Millionen für die Krebsforschung
20.09.2017 | Julius-Maximilians-Universität Würzburg

nachricht Ausschreibung des Paul-Martini-Preises 2018 für klinische Pharmakologie
19.09.2017 | Paul-Martini-Stiftung (PMS)

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik