Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Protein-Forschung: Wissenschaftler analysieren den Proteineinbau in Zellmembran

06.02.2015

Forscher der Universität Hohenheim untersuchen den Einbauprozess von Proteinen in Zellen / Fehlfunktionen können Krankheiten verursachen

Für die Proteinforschung spielt der Einbau der Proteine in die Zellmembran eine entscheidende Rolle. „Krankheiten resultieren häufig daraus, dass Proteine nicht an die Membran gebunden werden und dadurch ihre wichtige Funktion nicht entfalten können“, sagt Prof. Dr. Andreas Kuhn, Leiter des Instituts für Mikrobiologie an der Universität Hohenheim.

In dem Projekt „Struktur und Funktion der Membraninsertase YidC“ untersuchen er und sein Team den Einbau von Proteinen in Zellmembranen. Das Projekt wird von der DFG mit rund 377.000 Euro finanziert und zählt damit zu den Schwergewichten der Forschung an der Universität Hohenheim.

Proteine sind an sich nicht in der Lage sich in eine undurchlässige Membran einzubauen. Damit dies dennoch passiert, gibt es in der Natur die so genannten Membraninsertasen, die die neusynthetisierten Proteine binden und in die Membran leiten. Dabei werden die Proteine erkannt und zunächst an der Membranoberfläche gebunden.

In einem zweiten Schritt werden diese in die Membran hineingezogen und dort gefaltet. Diesem Phänomen sind der Projektleiter Prof. Dr. Kuhn und seine Mitarbeiter auf der Spur: „Dabei untersuchen wir mit den, von uns im Labor gereinigten, Membraninsertasen, die in eine künstliche Membran eingebaut wurden, den Einbaumechanismus und die molekularen Vorgänge aufzuklären.“

Fehlfunktionen von Proteinen sollen erkannt werden

Die Kontaktstellen zwischen der Membraninsertase und dem einzubauenden Protein können mit chemischen Methoden genau bestimmt werden. Auch die Proteinstruktur kann untersucht werden und könnte dann einen Hinweis auf den Einbaumechanismus geben.

„Langfristig bietet unsere Forschung die Möglichkeit Fehlfunktionen von Proteinen zu verstehen, die deren Membraneinbau verhindern und so zu Krankheiten führen können, wie beispielsweise bei Alzheimer, Diabetes und Retinopathie“, erläutert Prof. Dr. Kuhn.

Hintergrund: Forschungsprojekt „Struktur und Funktion der Membraninsertase YidC“

Das Projekt läuft seit Mitte 2013 und ist auf drei Jahre angelegt. Es wird von der DFG mit rund 377.000 Euro gefördert und gehört damit zu einem der Schwergewichte der Forschung an der Universität Hohenheim

Hintergrund: Schwergewichte der Forschung

Rund 32,8 Millionen Euro an Drittmitteln akquirierten Wissenschaftler der Universität Hohenheim im Jahr 2013 für Forschung und Lehre. In loser Folge präsentiert die Reihe „Schwergewichte der Forschung“ herausragende Forschungsprojekte mit einem Drittmittelvolumen von mindestens 250.000 Euro bei den Experimental- bzw. 125.000 Euro bei den Buchwissenschaften.

Kontakt für Medien:
Prof. Dr. rer. nat. Andreas Kuhn, Universität Hohenheim, Institut für Mikrobiologie,
Tel.: 0711/459 22222, E-Mail: andikuhn@uni-hohenheim.de

Text: Antje Schmid / Klebs

Florian Klebs | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-hohenheim.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe
22.09.2017 | Deutsche Forschungsgemeinschaft (DFG)

nachricht Millionen für die Krebsforschung
20.09.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie