Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Spezialstahl für die Energiewende

16.07.2015

Jülicher Werkstoffwissenschaftler erhalten Charles Hatchett Award für neuartigen Kraftwerksstahl

Auch konventionelle Kraftwerke "spüren" die Folgen der Energiewende. Sobald genug Strom regenerativ erzeugt wird, müssen sie runterfahren. Jülicher Werkstoffwissenschaftler haben einen neuen Stahl entwickelt, der den häufigen Lastwechseln in Dampfkraftwerken besser widersteht.


HiperFer-Stahlprobe im thermomechanischen Ermüdungsversuch, in dem der Start-Stop-Betrieb einer Kraftwerkskomponente simuliert wird. Ziel ist die Ermittlung der Lebensdauer bis zum sogenannten technischen Anriss.

Copyright: Forschungszentrum Jülich


Dr.-Ing. Bernd Kuhn vor einer Versuchsanlage zur Ermittlung des Ermüdungsrisswachstums. Damit wird die Restlebensdauer eines Werkstoffs nach dem ersten sogenannten technischen Anriss ermittelt.

Copyright: Forschungszentrum Jülich

Das als HiperFer (High Performance Ferritic Steels) bezeichnete Material ist belastbarer und weniger anfällig für Korrosion als derzeit verwendete Legierungen. Für die Zusammenfassung ihrer grundlegenden Ergebnisse, in der Fachzeitschrift "Materials Science and Engineering A", erhielten die Jülicher Forscher gestern in London den Charles Hatchett Award 2015.

Mit dem von der brasilianischen Firma CBMM, dem größten Niob-Produzenten der Welt, gesponserten Preis zeichnet das britische Institute of Materials, Minerals and Mining jedes Jahr eine herausragende wissenschaftliche Veröffentlichung im Zusammenhang mit dem Element Niob aus.

Das Metall ist als entscheidender Zusatz in den neu entwickelten Stählen der Jülicher Forscher vom Institut für Energie- und Klimaforschung (IEK-2) enthalten. Die Stähle mit der Bezeichnung HiperFer ermüden langsamer und verformen sich daher weniger schnell als die heute gängigen Legierungen, die für Bauteile in Kraftwerken verwendet werden.

"Das ermöglicht höhere Betriebstemperaturen als die mit den heutigen Stahlsorten üblichen 620 Grad Celsius. Und nur mit höheren Temperaturen lässt sich auch der Wirkungsgrad eines Dampfkraftwerks erhöhen", sagt der Jülicher Wissenschaftler Dr.-Ing. Bernd Kuhn, der das Fachgebiet metallische Werkstoffe und Fügetechnik leitet.

Außerdem ist der neue Stahl weniger anfällig für Korrosion. In Dampfkraftwerken kann Korrosion dazu führen, dass Bauteile überhitzen und schneller kaputt gehen. Der neue Stahl könnte somit nicht nur die Belastbarkeit und Lebensdauer von Bauteilen verlängern, sondern auch hohe Wartungskosten reduzieren.

In Deutschland ist der neue Spezialstahl auch aus einem anderen Grund interessant: Im Zuge der Energiewende laufen konventionelle Kraftwerke kaum noch im Dauer- oder Volllastbetrieb. Sie werden häufig teilweise oder ganz abgeschaltet, wenn der Anteil regenerativer Energien an der Stromerzeugung sehr hoch ist, und erst bei Bedarf schnell wieder angefahren.

Dieser Start-Stopp-Betrieb bedeutet eine deutlich höhere Belastung für die Bauteile. Hinzu kommt: "Kühlt eine Anlage ab, sammelt sich Kondenswasser in den Rohren. Passiert das immer wieder, erhöht sich die Korrosionsgefahr", erläutert Bernd Kuhn.

Das Geheimnis des neuen Stahls liegt in der speziellen chemischen Zusammensetzung und darauf angepasster Prozessführung bei der Weiterverarbeitung. Die Jülicher Wissenschaftler verwenden dafür eine Materialklasse, die noch nie für Bauteile von Kraftwerken genutzt wurde: rostfreie ferritische Stähle. Das sind Legierungen, die über einen vergleichsweise hohen Chromanteil verfügen. Üblicherweise haben sie eine sehr gute Korrosionsbeständigkeit bei sehr hohen Temperaturen, besitzen aber typischerweise nur eine niedrige mechanische Festigkeit.

Durch Zusätze lassen sich diese Eigenschaften verändern. Bei traditionellen Stählen passiert das mithilfe von Kohlenstoff- und Stickstoffanteilen. Bei rostfreien ferritischen Stählen funktioniert das nicht. Die Jülicher Forscher setzen daher auf eine intermetallische Phase: eine chemische Verbindung aus zwei oder mehr Metallen – in diesem Fall in erster Linie Niob und Wolfram.

Sie bildet sogenannte Ausscheidungen aus, die den Werkstoff fest machen und die Verformung bei hohen Temperaturen behindern. "Die Schwierigkeit besteht darin, die Ausscheidungen äußerst fein im Stahl zu verteilen. Ist die chemische Zusammensetzung nicht ausgewogen kann der Stahl spröde werden.", beschreibt Kuhn.

Auch mit industriellen Herstellungsverfahren haben sich die Wissenschaftler schon beschäftigt. Rund 200 Kilogramm schwere Versuchsschmelzen haben sie zusammen mit Partnern der Rheinisch-Westfälischen Technischen Hochschule Aachen hergestellt und gewalzt. Ein weiterer heikler Punkt in der Hochtemperatur- und Hochdrucktechnik ist das Schweißen einzelner Stahlteile zu einem kompletten Bauteil. Es darf die Qualität des Stahls nicht beeinträchtigen.

"Nach anderthalb Jahren Tests sind wir vorsichtig optimistisch, dass es mit einer auf Kraftwerksbaustellen üblichen Methode, dem manuellen Elektrodenschweißen, funktionieren kann. Abschließende Tests müssen dies aber noch eindeutig bestätigen, dann wäre die Vorentwicklung abgeschlossen und die industrielle Entwicklung könnte beginnen", so Bernd Kuhn.

Dennoch wird es noch mindestens zehn Jahre dauern, ehe der Stahl als Material für Kraftwerksbauteile auf den Markt kommen kann. Die Anforderungen an neue Werkstoffe in diesem Bereich sind extrem hoch. Sie müssen unter anderem zwingend 100.000 Stunden erfolgreich im Dauertest absolviert haben. Das sind insgesamt rund 12 Jahre. Der Jülicher Stahl hat etwa die Hälfte dieser Zeit bereits geschafft.

Außerdem muss sich ein kommerzieller Hersteller finden, der bereit ist, den neuen Stahl zu produzieren. Eventuell hilft es, dass sich die Eigenschaften des Jülicher Stahls vergleichsweise leicht verändern lassen, in dem die Verarbeitung angepasst wird. So könnten damit auch Komponenten wie hochfeste Turbinenschaufeln oder Schrauben produziert werden. Spezielle Güten für derartige Anwendungen ließen sich Bernd Kuhn zufolge in deutlich weniger als zehn Jahren entwickeln, die aber auch der langwierigen Qualifikation unterlägen.


Originalveröffentlichung:

B. Kuhn, M. Talik, L. Niewolak, J. Zurek, H. Hattendorf, P. Ennis, W. Quadakkers, T. Beck, L. Singheiser. Development of High Chromium Ferritic Steels Strengthened by Intermetallic Phases. Materials Science and Engineering A, 594, (2014), 372-380.DOI:10.1016/j.msea.2013.11.048.

Weiterführende Informationen:

Institut für Energie- und Klimaforschung, Bereich Werkstoffstruktur und -eigenschaften (IEK-2)

Charles Hatchett Award

Ansprechpartner:

Dr.-Ing. Bernd Kuhn
Institut für Energie- und Klimaforschung, Bereich Werkstoffstruktur und -eigenschaften (IEK-2)
Tel.: +49 2461 61-4132
E-Mail: b.kuhn@fz-juelich.de

Pressekontakt:

Tobias Schlößer
Tel. +49 2461 61-4771
E-Mail: t.schloesser@fz-juelich.de

Erhard Zeiss
Tel. 049 2461 61-1841
E-Mail: e.zeiss@fz-juelich.de

Erhard Zeiss | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Center Smart Materials CeSMa erhält SilverStar Förderpreis 2017 für innovativen Druckmessstrumpf
30.05.2017 | Fraunhofer-Institut für Silicatforschung ISC

nachricht Ausgezeichnet: Hallesche Pharmazeuten erhalten „Best Paper Award“ für Studie zu Nanopartikeln
30.05.2017 | Martin-Luther-Universität Halle-Wittenberg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Detaillierter Blick auf molekularen Gifttransporter

Transportproteine in unseren Körperzellen schützen uns vor gewissen Vergiftungen. Forschende der ETH Zürich und der Universität Basel haben nun die hochaufgelöste dreidimensionale Struktur eines bedeutenden menschlichen Transportproteins aufgeklärt. Langfristig könnte dies helfen, neue Medikamente zu entwickeln.

Fast alle Lebewesen haben im Lauf der Evolution Mechanismen entwickelt, um Giftstoffe, die ins Innere ihrer Zellen gelangt sind, wieder loszuwerden: In der...

Im Focus: Neue Methode für die Datenübertragung mit Licht

Der steigende Bedarf an schneller, leistungsfähiger Datenübertragung erfordert die Entwicklung neuer Verfahren zur verlustarmen und störungsfreien Übermittlung von optischen Informationssignalen. Wissenschaftler der Universität Johannesburg, des Instituts für Angewandte Optik der Friedrich-Schiller-Universität Jena und des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) präsentieren im Fachblatt „Journal of Optics“ eine neue Möglichkeit, glasfaserbasierte und kabellose optische Datenübertragung effizient miteinander zu verbinden.

Dank des Internets können wir in Sekundenbruchteilen mit Menschen rund um den Globus in Kontakt treten. Damit die Kommunikation reibungslos funktioniert,...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebensdauer alternder Brücken - prüfen und vorausschauen

29.05.2017 | Veranstaltungen

49. eucen-Konferenz zum Thema Lebenslanges Lernen an Universitäten

29.05.2017 | Veranstaltungen

Internationale Konferenz an der Schnittstelle von Literatur, Kultur und Wirtschaft

29.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Center Smart Materials CeSMa erhält SilverStar Förderpreis 2017 für innovativen Druckmessstrumpf

30.05.2017 | Förderungen Preise

Alternative Nutzung von Biogasanlagen – Wachse aus Biogas für die Kosmetikindustrie

30.05.2017 | Biowissenschaften Chemie

Detaillierter Blick auf molekularen Gifttransporter

30.05.2017 | Biowissenschaften Chemie