Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Multiple-Sklerose-Forschung prämiert

19.11.2012
Helmut-Bauer-Nachwuchspreis 2012 an Dr. Veit Rothhammer aus München verliehen. MS-Forschung zu Entzündungen des Zentralen Nervensystems ausgezeichnet.

Den mit 10.000 Euro dotierten Helmut-Bauer-Nachwuchspreis für Multiple-Sklerose (MS)-Forschung 2012 hat die Universitätsmedizin Göttingen an den Neuroimmunologen Dr. Veit Rothhammer aus München vergeben.

Mit der Auszeichnung prämiert die Jury seine Arbeit zur Grundlagenforschung über die Mechanismen der Einwanderung von Entzündungszellen in das Gehirn. Die Preisverleihung fand am 14. November 2012 während der 20. Multiple-Sklerose-Lecture an der UMG statt. Veranstalter sind die Abteilung Neuropathologie und die Abteilung Neurologie sowie das Institut für Multiple-Sklerose-Forschung (IMSF) der Universitätsmedizin Göttingen.

Der Göttinger Helmut-Bauer-Nachwuchspreis ist der bestdotierte Nachwuchsförderpreis für Multiple Sklerose-Forschung in Deutschland. Das Preisgeld hat die Firma Biogen Idec gestiftet.

Der 33-jährige Preisträger Dr. Veit Rothhammer ist Arzt und wissenschaftlicher Mitarbeiter in der Forschungsgruppe für Experimentelle Neuroimmunologie der Neurologischen Klinik und Poliklinik des Klinikums rechts der Isar der Technischen Universität München. Den Preis erhielt er für seine Arbeit zum Thema "Th17 lymphocytes traffic to the central nervous system independently of alpha4 integrin expression during EAE". Sie ist im November 2011 in der Fachzeitschrift "Journal of Experimental Medicine" erschienen.

Originalarbeit: Veit Rothhammer, Sylvia Heink, Franziska Petermann, Rajneesh Srivastava, Malte C. Claussen, Bernhard Hemmer and Thomas Korn Th17 lymphocytes traffic to the central nervous system independently of α4 integrin expression during EAE. Journal of Experimental Medicine. 2011 November 21; 208(12): 2465-76. Epub 2011 Oct 24.

Die Multiple Sklerose (MS) ist eine chronisch entzündliche Erkrankung des zentralen Nervensystems (ZNS) und führt zu Entzündungsherden in Gehirn und Rückenmark. In ihrer Studie konnten Dr. Rothhammer und Kollegen am Tiermodell der Experimentellen autoimmunen Enzephalomyelitis (EAE) nachweisen, dass es von bestimmten Ankermolekülen (Integrinen) auf der Oberfläche krankheitsvermittelnder T-Zellen abhängt, wo genau im ZNS die MS-typischen Schädigungen entstehen. Anhand ihrer Produktion bestimmter löslicher Stoffe werden T-Zellen vom Typ Th1- und Th17 unterschieden. Während T-Zellen vom Typ Th1 in strenger Abhängigkeit von dem Ankermolekül VLA-4 (alpha4beta1) hauptsächlich ins Rückenmark einwandern, gelangen T-Zellen vom Typ Th17 auch bei Blockade oder Fehlen von VLA-4 in das Gehirn. Hierdurch bewirken sie die für EAE atypischen motorischen Hemi-Syndrome wie Halbseitenlähmungen sowie klinische Symptome wie Ataxien, die aufgrund von Schädigungen im Kleinhirn auftreten. Das Eindringen von Th17 Zellen wiederum kann verhindert werden, wenn ein anderes Ankermolekül, nämlich die alphaL-Untereinheit des Integrins LFA-1 (alphaLbeta2) blockiert ist.

"Mit der Prämierung würdigen wir die ausgezeichnete experimentelle Arbeit von Dr. Rothhammer. Seine Arbeiten klären die Mechanismen auf, mittels derer Entzündungszellen aus dem Blut in das Gehirn gelangen und die Entstehung von MS-Läsionen auslösen. Die Erkenntnisse können dazu beitragen, die örtliche Verteilung von Schäden im Gehirn besser zu verstehen und bei der Immunüberwachung oder zur Entwicklung spezifischer Pharmaka in der Therapie der Multiplen Sklerose zu helfen", sagt Prof. Dr. Wolfgang Brück, Direktor der Abteilung Neuropathologie, und Sprecher der Jury.

Der Helmut-Bauer-Nachwuchspreis für Multiple-Sklerose-Forschung ist nach dem ehemaligen Direktor der Neurologischen Klinik der Universität Göttingen benannt. Prof. em. Dr. Helmut Bauer war von 1963 bis 1980 an der Neurologischen Klinik tätig. Der Nachwuchspreis würdigt Forschungsarbeiten über die Ursachen und neue Behandlungsstrategien bei Multipler Sklerose. Allen Bewerbungen liegen wissenschaftliche Publikationen in international anerkannten neurowissenschaftlichen Fachzeitschriften zugrunde. Das Preisgeld in Höhe von 10.000 Euro wird von der Firma Biogen Idec aus Ismaning gestiftet. Der Preis wurde 2012 zum neunten Mal verliehen.

WEITERE INFORMATIONEN:
Universitätsmedizin Göttingen, Georg-August-Universität
Direktor der Abteilung Neuropathologie
Prof. Dr. Wolfgang Brück, Telefon 0551 / 39-22700
Robert-Koch-Str. 40, 37075 Göttingen
neuropat@med.uni-goettingen.de

Stefan Weller | Uni Göttingen
Weitere Informationen:
http://www.uni-goettingen.de
http://www.med.uni-goettingen.de/presseinformationen/presseinformationen_17887.asp

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe
22.09.2017 | Deutsche Forschungsgemeinschaft (DFG)

nachricht Millionen für die Krebsforschung
20.09.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie