Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Internationaler Physikpreis für Frankfurter Forscher

16.07.2013
Der Nachwuchsforscher Dr. Till Jahnke wird für seine Beiträge zur Atom- und Molekülphysik geehrt. Mögliche Anwendungen seiner Arbeit zeichnen sich in der Strahlentherapie ab.

Die oberste Internationale Fachgesellschaft für Physiker IUPAP verleiht Dr. Till Jahnke vom Institut für Kernphysik der Goethe-Universität den mit 1.000 Euro dotierten Nachwuchsforscherpreis für seine herausragenden Leistungen auf dem Gebiet der Atom- und Molekülphysik. Jahnke wird den Preis am 29. Juli auf der Jahreskonferenz der IUPAP in Lanzhou, China, entgegen nehmen.

Till Jahnke, 36, erregte bereits während seiner Doktorarbeit Aufsehen in Fachkreisen, als er im Oktober 2004 in den „Physical Review Letters“, der weltweit angesehensten physikalischen Fachzeitschrift, über den experimentellen Nachweis eines zuvor theoretisch vorhergesagten Effekts berichtete. Damals untersuchte er eng benachbarte Atome (Dimere): Wird eines der Atome mit hochenergetischen Synchrotronstrahlen angeregt, kann es seine überschüssige Energie in einer Art interatomarem Stress-Abbau an das Nachbar-Atom abgeben. Dies geschieht durch einen extrem schnellen Zerfallsprozess, „Interatomic Coulombic Decay“ (ICD) genannt.

Diesen Effekt konnte er im Rahmen eines von der Deutschen Forschungsgemeinschaft (DFG) geförderten Projekts auch an Wassermolekülen erforschen – und stieß dabei auf medizinisch relevante Erkenntnisse. Denn die Forschung der letzten Jahre hat gezeigt, dass das Erbmolekül DNA nicht nur durch energiereiche Röntgenstrahlen geschädigt wird, sondern auch durch niederenergetische Elektronen, die im Körper erst infolge der Bestrahlung entstehen. Jahnke entdeckte einen Prozess, bei dem solche Sekundär-Elektronen frei werden:„Durch ICD treten bis zu 100 Mal mehr niederenergetische und für die Strahlentherapie relevante Elektronen auf“, hat Jahnke herausgefunden. Dies ist nicht nur wichtig für die Einschätzung von Strahlenschäden, sondern auch für die Dosierung bei der Strahlentherapie für Tumoren.

In den letzten Jahren konnte der Aspekt einer möglichen Strahlentherapie durch eine Idee der Gruppe von Prof. Lorenz Cederbaum der Universität Heidelberg ausgebaut werden. Mit einer bestimmten Unterart des ICD-Prozesses ist es möglich, in einem großen Komplex aus vielen Atomen ein beliebiges Atom direkt zu adressieren. In der Umgebung genau dieses einen Atoms entsteht dann ein ICD-Elektron, das Zellen schädigen kann. Eine zukünftige Anwendung könnte so aussehen, dass erkrankte Zellen mit bestimmten Substanzen markiert werden. Danach kann an diesen Markeratomen ICD durch Röntgenstrahlung ausgelöst und so die erkrankte Zelle gezielt beschädigt werden, während der restliche Körper nur wenig belastet wird. „Man kann sich dies so vorstellen, als platziere man kleine Bomben direkt an kranken Zellen, die dann durch Bestrahlung gezündet werden“, erklärt Jahnke. „Wir konnten nun in einem Experiment zeigen, dass der Prozess in einem einfachen Modellsystem wie geplant und mit einer unglaublich hohen Effizienz abläuft. Der Weg zur klinischen Anwendung ist allerdings noch sehr lang.“

Möglich wurden seine Experimente dank einer unter Frankfurter Federführung entwickelten spektroskopischen Methode, COLTRIMS genannt (Cold Target Recoil Ion Momentum Spectroscopy). Sie wird inzwischen international für unterschiedlichste Fragestellungen verwendet und ist mehrfach ausgezeichnet worden. Ausgangspunkt jeder Untersuchung ist die Anregung inner-atomarer Prozesse, die charakteristische Reaktionen auslösen und damit über die elektronische Struktur und Dynamik der Studienobjekte Auskunft geben. Das Besondere an dieser Methode ist, dass alle geladenen Teilchen im Detektor registriert werden. Aus der Messung der Flugzeit und des Auftrefforts lässt sich die gesamte Reaktion in voll-3D rekonstruieren.

Das „atomare Fußballspiel“ als Film

Kürzlich erweiterten Jahnke und die Frankfurter Arbeitsgruppe die Methode, so dass auch der zeitliche Ablauf rekonstruiert werden kann. „Wir können damit so etwas wie einen Film von einem atomaren oder molekularen Prozess drehen. Nehmen wir zum Vergleich ein Fußballspiel: Die typischerweise eingesetzte Technik erlaubt es, ein einziges Standbild des gesamten Spiels aufzunehmen. Man erhält quasi nur eine Information über das Endergebnis. Mit der COLTRIMS-Technik waren wir nun in der Lage, zusätzlich einzelne Schnappschüsse zu machen und Informationen darüber zu erhalten, wo Spieler und Ball als nächstes hinlaufen werden. Unsere letzten Erweiterungen der Methode erlaubten es uns tatsächlich, dem Verlauf des Spieles inklusive aller Flanken und Doppelpässe direkt zu folgen“, so Jahnke.

Für Jahnke ist der IUPAP-Preis nicht die erste Anerkennung. 2006 zeichnete die Vereinigung der Freunde und Förderer der Goethe-Universität seine Dissertation als eine der besten in den Naturwissenschaften aus. 2010 folgte der mit 10.000 Euro dotierte Röntgenpreis der Justus Liebig Universität Gießen. Jahnke hat inzwischen zahlreiche Angebote international angesehener Arbeitsgruppen aus Japan und den Vereinigten Staaten erhalten, ist Frankfurt aber treu geblieben. „Dass ich so gern hier bin, liegt definitiv an der Arbeitsgruppe und meinen beiden Mentoren Reinhard Dörner und Horst Schmidt-Böcking.“ erklärt er. „Die Bedingungen, die ich in Frankfurt für meine Forschung habe, sind außerdem phänomenal.“ Da er bereits als junger Nachwuchswissenschaftler zu den großen Synchrotronquellen in Berlin, Hamburg, Berkeley und in Japan reiste und seither in ganz Europa, Amerika und Australien Forschungsaufenthalte absolvierte, kann er das internationale Feld gut beurteilen.

Informationen: Dr. Till Jahnke, Institut für Kernphysik, Campus Riedberg, Tel.: (069) 798-47025; jahnke@atom.uni-frankfurt.de

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 von Frankfurter Bürgern gegründet, ist sie heute eine der zehn drittmittelstärksten und größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Parallel dazu erhält die Universität auch baulich ein neues Gesicht. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht ein neuer Campus, der ästhetische und funktionale Maßstäbe setzt. Die „Science City“ auf dem Riedberg vereint die naturwissenschaftlichen Fachbereiche in unmittelbarer Nachbarschaft zu zwei Max-Planck-Instituten. Mit über 55 Stiftungs- und Stiftungsgastprofessuren nimmt die Goethe-Universität laut Stifterverband eine Führungsrolle ein.

Herausgeber: Der Präsident
Abteilung Marketing und Kommunikation, Postfach 11 19 32,
60054 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation. Abteilung Marketing und Kommunikation, Grüneburgplatz 1, 60323 Frankfurt am Main, Tel.: (069) 798-29228, Fax: (069) 798-763 12531, hardy@pvw.uni-frankfurt.de

Dr. Anne Hardy | idw
Weitere Informationen:
http://www.uni-frankfurt.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht IVAM-Marketingpreis würdigt zum zehnten Mal überzeugendes Technologiemarketing
22.08.2017 | IVAM Fachverband für Mikrotechnik

nachricht UDE / UK: Verbundprojekt zur Bekämpfung Ras-abhängiger Tumore
22.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer IPM präsentiert »Deep Learning Framework« zur automatisierten Interpretation von 3D-Daten

22.08.2017 | Informationstechnologie

Globale Klimaextreme nach Vulkanausbrüchen

22.08.2017 | Geowissenschaften

RWI/ISL-Containerumschlag-Index erreicht neuen Höchstwert

22.08.2017 | Wirtschaft Finanzen