Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

ERC Starting Grants - Millionenförderung für LMU-Physiker

01.08.2013
Die LMU-Physiker Professor Alexander Högele und Professor Tim Liedl werden vom Europäischen Forschungsrat (ERC) mit je einem Starting Grant ausgezeichnet. Mit einer solchen Förderung unterstützt der ERC herausragende Wissenschaftlerinnen und Wissenschaftler und ihre zukunftsweisende Grundlagenforschung mit bis zu zwei Millionen Euro.

Projekt von Alexander Högele

Daten werden immer häufiger in Form von Lichtbündeln über Glasfasernetze transportiert. In Zukunft könnten einzelne Lichtteilchen (Photonen) diese Aufgabe übernehmen und eine abhörsichere Quantenkommunikation ermöglichen. Diese Lichtimpulse müssten nach dem Transport in elektrische Signale zurückgewandelt werden, indem sie kontrolliert Elektronen in einem Halbleitermaterial anregen. Wie das aussehen könnte und welche Effekte bei der Wechselwirkung von Licht mit Festkörpern sonst relevant sind, untersuchen Wissenschaftler derzeit mit Hilfe von Nanomaterialien wie Kohlenstoff-Nanoröhren.

Alexander Högele und seine Mitarbeiter produzieren ihre eigenen Nanoröhren, die sie optimal an verschiedene Versuche anpassen können. Dabei handelt es sich um einwandige Zylinder von rund einem Nanometer im Durchmesser, deren Wand aus einer Atomlage von regelmäßig angeordneten Kohlenstoffatomen besteht. Um optische Anregungen in einzelnen Nanoröhren möglichst störungsfrei zu untersuchen, haben die Forscher, einer Hängebrücke gleich, Röhren mit freitragenden Bereichen von einigen Mikrometern Länge hergestellt. Sie konnten nachweisen, dass die Elektronen im Halbleitermaterial unter diesen Bedingungen nach der Absorption von Photonen außergewöhnlich lange angeregt bleiben. Anschließend fallen sie regulär unter Lichtemission in das „Loch“ in der Atomhülle zurück, das sie hinterlassen haben. Durch diese lange Trennungsphase lassen sich die Absorptions- und Emissionsspektren der Nanoröhren scharf unterscheiden und für hochpräzise optische Spektroskopiemethoden nutzen.

In Zukunft möchten die Physiker die Kopplung zwischen Licht und den Elektron-Loch-Paaren (Exzitonen) dazu nutzen, um auch mechanische und magnetische Freiheitsgrade von halbleitenden Nanoröhren zu untersuchen. Das Exziton soll dabei als eine Art Bindeglied zwischen den elementaren Anregungen von Licht und Festkörper fungieren, also die Kopplung zwischen Photonen und Spins (elementare magnetische Anregungen) beziehungsweise Phononen (elementare mechanische Anregungen) vermitteln. Die Experimente sollen unter anderem die Grundlagen für die Verwendung von Nanoröhren in Zukunftstechnologien wie Quantenkryptographie und Quantenmetrologie erarbeiten.

Alexander Högele studierte Physik an der Ruprecht–Karls–Universität Heidelberg und an der Ludwig-Maximilians-Universität (LMU) München. Dort schloss er 2005 seine Promotion ab und arbeitete von 2006 bis 2008 als Postdoc am Institut für Quantenelektronik an der Eidgenössischen Technischen Hochschule (ETH) Zürich. Seit 2008 ist Alexander Högele Juniorprofessor für Experimentalphysik an der LMU.

Projekt von Tim Liedl

Wer versucht, in einem Bach einen Fisch zu fangen, wird schnell feststellen, dass dieser sich nicht dort befindet, wo unsere Augen ihn wahrnehmen. Die Ursache dafür ist, dass das Licht beim Eintreten in das Wasser und beim Heraustreten gebrochen wird. Während in der Natur nur Materialien mit einem positiven Brechungsindex existieren, entwickeln Wissenschaftler derzeit künstliche Strukturen, die Licht auch negativ, das heißt über das Lot hinaus, brechen sollen. Die Bausteine dieser sogenannten Metamaterialien müssen jedoch kleiner als 100 Nanometer sein. Daher arbeiten die Fachleute mit künstlichen DNA-Strängen und metallischen Nanopartikeln, die sich von selbst zu optisch aktiven Nanostrukturen zusammensetzen.

Tim Liedl und seine Mitarbeiter sind Spezialisten in der sogenannten DNA-Origami-Technik. Als wären sie mit Magneten versehen, falten sich dabei DNA-Bausteine in vorgegebene dreidimensionale Strukturen. Vor Kurzem ist es den Physikern gelungen, diese definiert mit Goldpartikeln zu besetzen und damit eine erste wichtige Eigenschaft von Licht zu verändern: die Polarisation. Auf diese Weise konnten die Wissenschaftler zeigen, dass sich DNA-Origami-Strukturen in Kombination mit Metallpartikeln grundsätzlich dazu eignen, optische Parameter gezielt einzustellen.

Die Physiker wollen nun diese Nanostrukturen unter anderem zu einem Metamaterial mit negativem Brechungsindex weiterentwickeln. In Kombination mit den bestehenden positiv brechenden Materialien ließen sich so beispielsweise optische Systeme wie Mikroskope, Solarzellen oder Lichtleiter fundamental verbessern. Ein anderer Aspekt des Projektes beschäftigt sich mit der Frage, ob optisch aktive Metamaterialien als sensible Sensoren für Viren oder spezielle Zell-Marker eingesetzt werden können.

Tim Liedl studierte Physik an der LMU München und promovierte dort in der Gruppe von Friedrich C. Simmel. 2007 bis 2009 arbeitete er als Postdoc bei William M. Shih am Dana-Farber Cancer Institute der Harvard Medical School in Boston, USA. Seit 2009 ist Tim Liedl Professor für Experimentelle Physik an der LMU München.

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro
24.03.2017 | Ministerium für Wirtschaft, Arbeit und Wohnungsbau Baden-Württemberg

nachricht TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro
24.03.2017 | Technische Universität Kaiserslautern

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Atome rennen sehen - Phasenübergang live beobachtet

30.03.2017 | Physik Astronomie

Herzerkrankungen: Wenn weniger mehr ist

30.03.2017 | Medizin Gesundheit

Flipper auf atomarem Niveau

30.03.2017 | Physik Astronomie