Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

ERC Starting Grants - Millionenförderung für LMU-Physiker

01.08.2013
Die LMU-Physiker Professor Alexander Högele und Professor Tim Liedl werden vom Europäischen Forschungsrat (ERC) mit je einem Starting Grant ausgezeichnet. Mit einer solchen Förderung unterstützt der ERC herausragende Wissenschaftlerinnen und Wissenschaftler und ihre zukunftsweisende Grundlagenforschung mit bis zu zwei Millionen Euro.

Projekt von Alexander Högele

Daten werden immer häufiger in Form von Lichtbündeln über Glasfasernetze transportiert. In Zukunft könnten einzelne Lichtteilchen (Photonen) diese Aufgabe übernehmen und eine abhörsichere Quantenkommunikation ermöglichen. Diese Lichtimpulse müssten nach dem Transport in elektrische Signale zurückgewandelt werden, indem sie kontrolliert Elektronen in einem Halbleitermaterial anregen. Wie das aussehen könnte und welche Effekte bei der Wechselwirkung von Licht mit Festkörpern sonst relevant sind, untersuchen Wissenschaftler derzeit mit Hilfe von Nanomaterialien wie Kohlenstoff-Nanoröhren.

Alexander Högele und seine Mitarbeiter produzieren ihre eigenen Nanoröhren, die sie optimal an verschiedene Versuche anpassen können. Dabei handelt es sich um einwandige Zylinder von rund einem Nanometer im Durchmesser, deren Wand aus einer Atomlage von regelmäßig angeordneten Kohlenstoffatomen besteht. Um optische Anregungen in einzelnen Nanoröhren möglichst störungsfrei zu untersuchen, haben die Forscher, einer Hängebrücke gleich, Röhren mit freitragenden Bereichen von einigen Mikrometern Länge hergestellt. Sie konnten nachweisen, dass die Elektronen im Halbleitermaterial unter diesen Bedingungen nach der Absorption von Photonen außergewöhnlich lange angeregt bleiben. Anschließend fallen sie regulär unter Lichtemission in das „Loch“ in der Atomhülle zurück, das sie hinterlassen haben. Durch diese lange Trennungsphase lassen sich die Absorptions- und Emissionsspektren der Nanoröhren scharf unterscheiden und für hochpräzise optische Spektroskopiemethoden nutzen.

In Zukunft möchten die Physiker die Kopplung zwischen Licht und den Elektron-Loch-Paaren (Exzitonen) dazu nutzen, um auch mechanische und magnetische Freiheitsgrade von halbleitenden Nanoröhren zu untersuchen. Das Exziton soll dabei als eine Art Bindeglied zwischen den elementaren Anregungen von Licht und Festkörper fungieren, also die Kopplung zwischen Photonen und Spins (elementare magnetische Anregungen) beziehungsweise Phononen (elementare mechanische Anregungen) vermitteln. Die Experimente sollen unter anderem die Grundlagen für die Verwendung von Nanoröhren in Zukunftstechnologien wie Quantenkryptographie und Quantenmetrologie erarbeiten.

Alexander Högele studierte Physik an der Ruprecht–Karls–Universität Heidelberg und an der Ludwig-Maximilians-Universität (LMU) München. Dort schloss er 2005 seine Promotion ab und arbeitete von 2006 bis 2008 als Postdoc am Institut für Quantenelektronik an der Eidgenössischen Technischen Hochschule (ETH) Zürich. Seit 2008 ist Alexander Högele Juniorprofessor für Experimentalphysik an der LMU.

Projekt von Tim Liedl

Wer versucht, in einem Bach einen Fisch zu fangen, wird schnell feststellen, dass dieser sich nicht dort befindet, wo unsere Augen ihn wahrnehmen. Die Ursache dafür ist, dass das Licht beim Eintreten in das Wasser und beim Heraustreten gebrochen wird. Während in der Natur nur Materialien mit einem positiven Brechungsindex existieren, entwickeln Wissenschaftler derzeit künstliche Strukturen, die Licht auch negativ, das heißt über das Lot hinaus, brechen sollen. Die Bausteine dieser sogenannten Metamaterialien müssen jedoch kleiner als 100 Nanometer sein. Daher arbeiten die Fachleute mit künstlichen DNA-Strängen und metallischen Nanopartikeln, die sich von selbst zu optisch aktiven Nanostrukturen zusammensetzen.

Tim Liedl und seine Mitarbeiter sind Spezialisten in der sogenannten DNA-Origami-Technik. Als wären sie mit Magneten versehen, falten sich dabei DNA-Bausteine in vorgegebene dreidimensionale Strukturen. Vor Kurzem ist es den Physikern gelungen, diese definiert mit Goldpartikeln zu besetzen und damit eine erste wichtige Eigenschaft von Licht zu verändern: die Polarisation. Auf diese Weise konnten die Wissenschaftler zeigen, dass sich DNA-Origami-Strukturen in Kombination mit Metallpartikeln grundsätzlich dazu eignen, optische Parameter gezielt einzustellen.

Die Physiker wollen nun diese Nanostrukturen unter anderem zu einem Metamaterial mit negativem Brechungsindex weiterentwickeln. In Kombination mit den bestehenden positiv brechenden Materialien ließen sich so beispielsweise optische Systeme wie Mikroskope, Solarzellen oder Lichtleiter fundamental verbessern. Ein anderer Aspekt des Projektes beschäftigt sich mit der Frage, ob optisch aktive Metamaterialien als sensible Sensoren für Viren oder spezielle Zell-Marker eingesetzt werden können.

Tim Liedl studierte Physik an der LMU München und promovierte dort in der Gruppe von Friedrich C. Simmel. 2007 bis 2009 arbeitete er als Postdoc bei William M. Shih am Dana-Farber Cancer Institute der Harvard Medical School in Boston, USA. Seit 2009 ist Tim Liedl Professor für Experimentelle Physik an der LMU München.

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro
21.02.2018 | Ernst-Moritz-Arndt-Universität Greifswald

nachricht Eva Luise Köhler Forschungspreis für Seltene Erkrankungen 2018 für Tübinger Neurowissenschaftler
21.02.2018 | Universitätsklinikum Heidelberg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics