Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Chemie-Nobelpreis 2013

11.10.2013
Die preisgekrönten Arbeiten zur Computermodellierung von Molekülen haben auch für die Forschung an der Universität Bayreuth große Bedeutung

Wie das Nobelpreis-Komitee in Stockholm gestern bekannt gab, geht der Nobelpreis für Chemie in diesem Jahr an Martin Karplus, Michael Levitt und Arieh Warshel.

Die drei in den USA tätigen Forscher werden für ihre Beiträge zur Entwicklung von Computermodellen ausgezeichnet, die der Beschreibung komplexer chemischer Prozesse dienen. Sie haben maßgeblich dazu beigetragen, dass viele biochemische Prozesse heute detailliert im Computer betrachtet werden können.

So können etwa Allergene in atomarer Auflösung studiert und Details der Atmungskette untersucht werden – wie dies in Bayreuth beispielsweise im Forschungszentrum für Bio-Makromoleküle (BIOmac) in den Arbeitsgruppen von Prof. Dr. Paul Rösch und Prof. Dr. Matthias Ullmann geschieht.

"Vor allem Prof. Karplus hat wesentlich dazu beigetragen, dass die magnetische Kernresonanzspektroskopie und die Kristallographie heute zu den wichtigsten Methoden gehören, mit denen die molekularen Grundlagen vieler biomedizinisch relevanter Vorgänge und Krankheiten untersucht werden," erläutert Prof. Dr. Stephan Schwarzinger, der die molekularen Grundlagen von Amyloidosen in Experimenten und mithilfe von Computermodellen erforscht.

„Martin Karplus hat maßgeblich auch die Entwicklung der magnetischen Kernresonanz-Spektroskopie als Methode für die Strukturbestimmung von Molekülen bestimmt. Über die nach ihm benannte Karplus-Beziehung lassen sich NMR-Parameter in sogenannte Diederwinkel umrechnen.“

Für die Forschung an der Universität Bayreuth hat die Arbeit der frisch gekürten Nobelpreis- träger große Bedeutung: So betreibt das Forschungszentrum BIOmac eines der weltweit größten NMR-Zentren, in welchem demnächst das leistungsstärkste NMR-Spektrometer der Welt (1 GHz NMR Spektrometer) installiert wird. NMR wird in Bayreuth unter anderem zur Suche nach neuen Antibiotika verwendet, ebenso für die Entwicklung neuer analytischer Schnelltests für die Lebensmittelindustrie.

Experimentelle Ergebnisse aus der NMR und der Kristallographie, die am Lehrstuhl Biochemie von Prof. Dr. Clemens Steegborn eingesetzt wird, werden mit Hilfe der von Karplus, Levitt und Warshel entwickelten Verfahren in Supercomputern in dreidimensionale Molekülmodelle umgerechnet.

Für diesen Zweck hat die Universität Bayreuth in diesem Jahr einen neuen Supercomputer in Betrieb genommen, der zu den 500 schnellsten Rechnern der Welt zählt.

Christian Wißler M.A.

Stabsabteilung Presse, Marketing und Kommunikation
- Wissenschaftskommunikation -
Zentrale Universitätsverwaltung (ZUV), Zi. Nr. 3.09
Universitätsstraße 30
95447 Bayreuth
Tel.: 0921/ 55 5356
E-Mail: mediendienst-forschung@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de/presse/Aktuelle-Infos/2013/260-Chemie-Nobelpreistraeger.pdf

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro
21.02.2018 | Ernst-Moritz-Arndt-Universität Greifswald

nachricht Eva Luise Köhler Forschungspreis für Seltene Erkrankungen 2018 für Tübinger Neurowissenschaftler
21.02.2018 | Universitätsklinikum Heidelberg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics