Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Carl-Ramsauer-Preis 2011 geht zweimal ans Max-Born-Institut

14.11.2011
Dr. Christian Eickhoff und Dr. Wilhelm Kühn sind zwei der diesjährigen Preisträger des Carl-Ramsauer-Preises der Physikalischen Gesellschaft zu Berlin (PGzB).

Christian Eickhoff wird für seine Dissertation an der Freien Universität Berlin ausgezeichnet, Wilhelm Kühn promovierte an der Humboldt-Universität zu Berlin; die Arbeiten dazu führten die beiden Forscher am Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) durch. Der Preis wird am 16. November 2011 an der Freien Universität, Fachbereich Physik, verliehen.

Dr. Christian Eickhoff erhält den Preis für seine Dissertation mit dem Titel „Zeitaufgelöste Zweiphotonen-Photoemission an der Si(001)-Oberfläche: Dynamik heißer Elektronen und zweidimensionaler Fano-Effekt“. Er untersuchte die Si(100)-Oberfläche. Silizium ist der Grundbaustein der Halbleiterindustrie. Die voranschreitende Miniaturisierung und Effizienzsteigerung fordern ein grundlegendes Verständnis der elektronischen und dynamischen Eigenschaften der Ladungsträger an der Siliziumoberfläche.

Eickhoff konstruierte ein komplexes Experiment, bestehend aus einem Lasersystem mit weit abstimmbaren Photonenenergien und einer Ultrahochvakuumanlage mit zweidimensionaler (2D) Photoelektronendetektion. Mit einer Zeitauflösung von wenigen zehn Femtosekunden (1 fs = 10 hoch -15 sec) verfolgte er die Dynamik optisch angeregter Elektronen in den Oberflächenzuständen sowie im Leitungsband von Silizium und untersuchte den Einfluss elastischer und inelastischer Streuprozesse auf Energierelaxation und Oberflächenrekombination.

Dabei konnte er erklären, wie es durch die optische Anregung der Ladungsträger zu komplexen zweidimensionalen Interferenzphänomenen kommt, die durch Fano-Resonanzen im Anfangs- und Zwischenzustand beschrieben werden können. Zum anderen zeigte er in seiner Arbeit, warum die erhöhte Temperatur heißer Elektronen im Leitungsband über eine ungewöhnlich lange Zeitspanne von vielen Pikosekunden (1 ps = 10 hoch -12 sec) bestehen bleibt. Die Extraktion heißer Elektronen wird beispielsweise für die Effizienzsteigerung in Solarzellen der dritten Generation diskutiert.

Dr. Wilhelm Kühn hat in seiner Dissertation eine neue Methode der nichtlinearen Spektroskopie im Terahertz-Bereich (1 THz = 10 hoch 12 Hz) entwickelt und in der Festkörperphysik eingesetzt. Die nichtlineare Wechselwirkung zwischen Licht und Materie wird dabei in zwei unabhängigen Zeitdimensionen gemessen, um daraus 2D Spektren in der Frequenzdomäne abzuleiten. Diese Spektren geben Aufschluss über die Kopplung verschiedener Anregungen des untersuchten Systems und ihre zeitliche Entwicklung.

THz-Wellen schwingen im Vergleich zu sichtbaren Licht sehr „langsam“, eine Schwingungsperiode dauert 250 Femtosekunden. Durch Fokussierung lassen sich hohe elektrische Felder (ca. 300 kV/cm) erreichen und zur Beschleunigung von Ladungsträgern in Festkörpern einsetzen. Kühn konnte daher mit der neuen Methode die Transporteigenschaften von Elektronen im Halbleitermaterial Galliumarsenid (GaAs) untersuchen.

Dabei fand er, dass sich stark beschleunigte Elektronen nahezu reibungsfrei ("ballistisch") durch den GaAs Kristall bewegen. Bei sehr hohen Bewegungsenergien werden sie jedoch abgebremst und sogar in die Gegenrichtung beschleunigt weil ihre effektive Masse negativ wird. Die resultierenden kreisenden Elektronenbewegungen, sog. Blochoszillationen, wurden so erstmals in einem Volumenkristall nachgewiesen.

Kühn hat im nächsten Schritt ein Halbleiter-Modellsystem mit einer überaus starken Kopplung der Elektronen an das Kristallgitter untersucht. Er konnte durch 2D-Spektroskopie zeigen, dass aus Elektronen und Gitterschwingungen ein neues Teilchen, das Polaron, entsteht. Seine Ergebnisse, die durch theoretische Berechnungen bestätigt wurden, zeigen außerdem, wie und in welche Kanäle die Energie des Elektrons in das Kristallgitter abfließt.

Weitere Informationen:

Dr. Christian Eickhoff, Freie Universität Berlin, Tel.: 030 838-56047,
Email: eickhoff.christian@fu-berlin.de,
Betreuer: Prof. Martin Weinelt, Freie Universität Berlin, Tel.: 030 838-56060,
Email: weinelt@physik.fu-berlin.de
Dr. Wilhelm Kühn, Tel.: 0163-7356544, Email: wilhelm.kuehn@gmail.com,
Betreuer: Prof. Thomas Elsässer, Max-Born-Institut, Tel.: 030 6392 1401,
E-Mail: elsasser@mbi-berlin.de
Physikalische Gesellschaft zu Berlin, Geschäftsführer Prof. Dr. Holger Grahn,
Tel. 030 20377-318, Email: htgrahn@pdi-berlin.de

Christine Vollgraf | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.fv-berlin.de

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe
22.09.2017 | Deutsche Forschungsgemeinschaft (DFG)

nachricht Millionen für die Krebsforschung
20.09.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

Junge Physiologen Tagen in Jena

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

25.09.2017 | Messenachrichten

Fraunhofer ISE steigert Weltrekord für multikristalline Siliciumsolarzelle auf 22,3 Prozent

25.09.2017 | Energie und Elektrotechnik

Die Parkinson-Krankheit verstehen – und stoppen: aktuelle Fortschritte

25.09.2017 | Medizin Gesundheit