Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine Million Euro für die Mikroskopie mit Infrarot- und Terahertzstrahlung: RUB-Forscher erhalten Förderung aus dem BMBF

29.06.2007
Schnelle, hochauflösende Bilder für Material- und Biowissenschaften

100- bis 1000mal genauer als eine kommerzielle Infrarotmikroskopaufnahme werden die Bilder des breitbandigen IR- und THz-Nanoskops sein, das Chemiker um Prof. Dr. Martina Havenith-Newen (Lehrstuhl für Physikalische Chemie II der RUB) entwickeln. Für den Bau des neuen Großgeräts hat das Bundesministerium für Bildung und Forschung (BMBF) jetzt 930.000 Euro bewilligt. Zwei Jahre wird das Gerät in Bochum stehen. Nach der Aufbau- und Testphase zieht es dann in zwei Jahren nach Karlsruhe um. Am dortigen Elektronenbeschleuniger ANKA wird die notwendige Breitband-Synchrotronstrahlung erzeugt, mit der das Mikroskop arbeitet. Dieser Aufbau ist in Deutschland einzigartig. Künftig wollen die Forscher damit Zellen, Membrane, Nanopartikel und nanostrukturierte Materialien genauestens untersuchen.

Bisher sind der Auflösung Grenzen gesetzt

Die Infrarot(IR)-Nahfeldmikroskopie ist eine leistungsstarke Methode zur chemischen und strukturellen Analyse. Sie liefert Informationen über Eigenschaften der Materie auf der "submikroskopischen" Nanoskala, die für wissenschaftliche und wirtschaftliche Anwendungen im Bereich der Physik, Chemie, Biologie, Medizin, Geo- oder Materialwissenschaften unerlässlich sind. Mit dieser Technik, die am Lehrstuhl von Prof. Havenith-Newen bereits zur Verfügung steht und dort selbst entwickelte Infrarotlaser als Strahlungsquelle nutzt, haben die Forscher bei der chemischen Charakterisierung von einzelnen Moleküllagen und Lipidschichten bereits Lateralauflösungen im Bereich von 30 x 30 nm erreicht (30 nm = 1/100 der Dicke eines menschlichen Haares). Der Auflösung von mikroskopischen Bilder sind durch Beugungseffekte im normalen Betrieb Grenzen gesetzt: "Im Allgemeinen können bei der Mikroskopie nur Strukturen unterscheiden werden, die größer sind als die Wellenlänge des Lichtes, und dies sind bei Infrarotlicht mehrere Mikrometer", erklärt Prof. Havenith-Newen.

... mehr zu:
»BMBF »Mikroskopie

Schnelle, verbesserte Bilder durch Kombination mehrerer Wellenlängen

"Mit dem jetzt bewilligten Aufbau werden wir diese Auflösung um mehrere Größenordnungen unterschreiten und dadurch kleinste Untereinheiten sichtbar machen", freut sie sich. Ihre Arbeitsgruppe wird ein Mikroskop entwickeln, das die IR-Nahfeldmikroskopie mit der Terahertz-Nahfeldmikroskopie verbindet. Die Proben werden dabei mit Synchrotronstrahlung bestrahlt, die bei der Beschleunigung von Elektronen anfällt und eine große Bandbreite von der Mikrowellen- über die Terhahertz- bis zur Infrarotstrahlung umfasst. Die Nutzung von Synchrotonstrahlung, die aus einzelnen sehr kurzen, nur Picosekunden dauernden (Picosekunden = billionstel Sekunden), intensiven Lichtpulsen besteht, ermöglicht außerdem sehr schnelle mikroskopische Aufnahmen über den gesamten Spektralbereich, wodurch die Aufklärung von dynamischen, d. h. zeitlich veränderlichen Prozessen in Zellen ermöglicht wird.

Weitere Informationen

Prof. Dr. Martina Havenith-Newen, Fakultät für Chemie und Biochemie der Ruhr-Universität Bochum, Tel. 0234/32-24249, Fax: 0234/32-14183

martina.havenith@ruhr-uni-bochum.de

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Berichte zu: BMBF Mikroskopie

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro
24.03.2017 | Ministerium für Wirtschaft, Arbeit und Wohnungsbau Baden-Württemberg

nachricht TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro
24.03.2017 | Technische Universität Kaiserslautern

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit