Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Laser und Frequenzkamm – die genaueste Uhr der Welt

21.06.2007
Lasertechnik / Carl-Zeiss-Forschungspreis 2007

Jun Ye ist gerade erst 40 Jahre alt – und gilt dennoch in der optischen Szene schon als „ganz Großer“. Der im chinesischen Shanghai geborene Amerikaner ist Professor für Physik und lehrt an der Universität von Colorado in Boulder, an der auch eins seiner Vorbilder zu Hause ist: John Hall, der mit Theodor Hänsch (Direktor am Max-Planck-Institut für Quantenoptik in Garching) zusammen bereits den Olymp der Wissenschaften erklommen hat und 2005 mit dem Nobelpreis für Physik ausgezeichnet wurde. Die Königlich Schwedische Akademie der Wissenschaften verlieh den höchsten wissenschaftlichen Lorbeer für die Entwicklung der auf Laser gegründeten Präzisionsspektroskopie, das heißt die Farbbestimmung des Lichts von Atomen und Molekülen mit äußerster Genauigkeit. In diese großen Fußstapfen ist Jun Ye getreten – und hat jetzt dafür den Carl-Zeiss-Forschungspreis 2007 gewonnen.

Jun Ye, der wie Hall am JILA der Universität von Colorado und zugleich am National Institute of Standards and Technology (beide in Boulder) forscht, hat die „Vorlage“ von Hänsch und Hall aufgegriffen und die optische Messtechnik weiterentwickelt. Für seine experimentellen Arbeiten im Bereich der Femtosekundenlaser und Frequenzkämme wurde er mit einem der wichtigsten deutschen Forschungspreise geehrt, der auf der 18. internationalen Fachmesse „LASER 2007. World of Photonics“ verliehen wurde. Die Auszeichnung, die mit 25.000 Euro dotiert ist, wird vom Ernst-Abbe-Fonds im Stifterverband für die Deutsche Wissenschaft alle zwei Jahre für herausragende Leistungen internationaler Optikforschung vergeben. Sie alterniert mit dem Otto-Schott-Forschungspreis für besondere Leistungen in der Glasforschung.

Mit der Frequenzkammtechnik ist es erstmals möglich, auf einfache Weise die Schwingungen des Lichts mit höchster Genauigkeit zu messen. „Wir sind heute so weit, dass wir 500.000 Milliarden Schwingungen in der Sekunde zählen können“, betont Hänsch. Jun Ye hat diese Möglichkeiten ergriffen und sich weltweit mit an die Spitze bei der Entwicklung von Frequenz-stabilisierten Lasern und der daraus abgeleiteten Messtechnik katapultiert. So hat er mit seiner Gruppe im weltweiten Wettlauf um die beste optische Atomuhr ein Zeichen gesetzt: Seine Messanordnung gehört hinsichtlich Präzision und Stabilität zu den führenden Einrichtungen rund um den Erdball, wobei bestimmte optische Übergänge in Strontium-Atomen genutzt werden. Experten gehen davon aus, dass diese Uhr die Zeit präziser messen kann als die Cäsium-Uhr des National Institute of Standards and Technology (NIST), die in den USA ähnlich wie in Deutschland die Physikalisch-Technische Bundesanstalt (PTB) Zeit und Frequenz vorgibt. Und dabei schon ziemlich genau ist, denn das „zeitliche Fehlverhalten“ liegt bei einer Sekunde in etwa 70 Millionen Jahren. „Wir benutzen eine Wolke aus extrem kalten Strontium-Atomen, die extrem schnell ticken, ein zweiter Laser zählt dann die Ticks“, erklärt Jun Ye, der hofft, dass am Ende seine Uhr um den Faktor 100 besser ist als die des NIST.

... mehr zu:
»Atom »Laser »Molekül »Physik

Unvorstellbar präzise Uhren verbessern die Navigation

Genauere Uhren sind nicht nur eine Spielerei der Physiker, sondern in vielen Bereichen von großem Wert. „Das betrifft zum Beispiel die Navigation auf große Entfernungen. Je genauer die hier verwendeten Uhren sind, desto exakter wird auch die Positionsbestimmung“, erläutert Dr. Augustin Siegel, Leiter Konzernfunktion Forschung und Technologie von Carl Zeiss. Die Anwendungsmöglichkeiten reichen von besserer GPS-Systemen bis zur Bestimmung von weit entfernten Raumfahrzeugen. So wie zum Beispiel die Sonde Voyager 1, die vor 30 Jahren gestartet wurde und inzwischen unser Sonnensystem verlassen hat.

Darüber hinaus sind Frequenzkämme unschätzbare und unverzichtbare Werkzeuge für die so genannten Hochgeschwindigkeitswissenschaften (ultrafast sciences). Gerade durch das Vordringen der Forschung in den Bereich von einzelnen Atomen und Molekülen, wie sie für den Nanokosmos typisch sind, werden immer schnellere Lichtblitze benötigt. Chemische Reaktionen starten mit der Bewegung von Elektronen – und die benötigen nur Attosekunden, also Trillionstel Sekunden (oder Milliardstel von Milliardstel Sekunden). Um es verständlicher zu machen: Eine Minute hat mehr Attosekunden als Minuten seit dem Urknall vergangen sind. Femtosekundenlaser sind zwar um den Faktor 1.000 langsamer, aber immer noch schnell genug, um die Bewegung von Atomen in Molekülen durch physikalische, chemische oder biologische Wirkungen zu beobachten. „Bisher waren wir in der Lage, einzelne Atome zu identifizieren. Die neue Art der Spektroskopie erlaubt uns erstmals auch mit unglaublicher Präzision, Moleküle zu bestimmen“, betont Dr. Ronald Holzwarth, Technischer Leiter der Menlo Systems GmbH (Martinsried), einem Hersteller von Frequenzkammsystemen. Holzwarth gehört mit Hänsch zu den Gründern dieses Start-ups in den Optischen Technologien, dessen Systeme insbesondere von Eichbehörden sehr gefragt sind. Diese Spektroskopie generiert eine Art Fingerabdruck von Molekülen, der in dieser Empfindlichkeit und Genauigkeit bislang nicht möglich war.

Wurden die bisherigen Carl-Zeiss-Forschungspreise auch für sehr anwendungsnahe Themen wie die Photodynamische Therapie am Auge oder die Entwicklung der blauen Leuchtdiode vergeben, ist das diesjährige Thema eindeutig eine Grundlagenarbeit. „Es gibt noch keinen Ansatz für eine industrielle Anwendung der Arbeiten von Jun Ye. Fasziniert hat uns vielmehr, mit welcher Geschwindigkeit und welchem experimentellen Geschick unser Laureat einen Nobelpreis in forschungsrelevante Umsetzungen gebracht hat“, so Siegel. Zahlreiche weitere Auszeichnungen, die Jun Ye bereits erhalten hat, zeigen eines ganz eindeutig: Die Fußstapfen der Vorbilder sind zwar wahrlich groß, aber offenbar nicht übergroß für den sympathischen Amerikaner.

Rolf Froböse | Rolf Froböse
Weitere Informationen:
http://www.zeiss.de

Weitere Berichte zu: Atom Laser Molekül Physik

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Neues Helmholtz-Institut in Würzburg erforscht Infektionen auf genetischer Ebene
24.05.2017 | Hermann von Helmholtz-Gemeinschaft Deutscher Forschungszentren

nachricht CRTD erhält 1.56 Millionen Euro BMBF-Förderung für Forschung zu degenerativen Netzhauterkrankungen
24.05.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten