Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

2,8 Millionen Euro für Nano-Medizin

19.07.2005


Mit 2,8 Millionen Euro unterstützt die EU ein Forschungsvorhaben am Klinikum rechts der Isar der Technischen Universität München (TUM) mit dem Ziel, eine neue Technologie für die Gentherapie zu etablieren. Initiator und Projektleiter Dr. Christian Plank, Biochemiker am Institut für Experimentelle Onkologie und Therapieforschung (Direktor: Prof. Bernd Gänsbacher) hat dafür ein internationales Spezialistenteam mit 13 Arbeitsgruppen aus Europa, Israel und den USA zusammengestellt. Die Wissenschaftler wollen gemeinsam eine Methode entwickeln, die es erlaubt, Gene mithilfe von Nanopartikeln und Magnetfeldern in Körperzellen zu transportieren. Diese innovative Technik könnte dazu beitragen, Erbkrankheiten, Aids und Krebs zu bekämpfen.


Genfähren mit blinden Passagieren

Bei vielen Erkrankungen sind die blutbildenden Zellen beeinträchtigt. Dies ist beispielsweise bei den seltenen Erbkrankheiten SCID-X1 und ADA-SCID der Fall. Die Patienten, auch bekannt als "Bubble Kids", leiden unter einer Störung des Immunsystems. Jede Infektion kann tödlich enden. Mithilfe von Viren sind Mediziner in der Lage, Gene in die blutbildenden Zellen der "Bubble-Kids" einzubringen und so die defekte Erbanlage dauerhaft zu korrigieren. Diese virale Gentherapie birgt jedoch Gefahren, denn die Virus-Gene können zu schwerwiegenden Komplikationen führen. In einer Studie mit elf "Bubble-Kids" wurden acht Kinder geheilt, bei drei Kindern kam es jedoch zu einer unkontrollierten Vermehrung der behandelten Blutzellen. Dieses Problem wurde durch Bestandteile der verwendeten viralen Genfähren hervorgerufen, nicht durch das zur Therapie eingesetzte Gen. Auch bei anderen Krankheiten wie beispielsweise Krebs sind mögliche Nebenwirkungen des viralen Gentransfers eine Hürde für die ansonsten Erfolg versprechende Gentherapie. Doch wie kann man Gene ohne die praktischen "viralen Fähren" in die menschliche Erbsubstanz einschleusen?


Magnet statt Virus

"Wenn unser Projekt gelingt, kann das ganz einfach sein", erklärt Dr. Christian Plank. "Man verbindet Genmoleküle mit magnetischen Nanopartikeln und leitet sie dann mit einem Magnetfeld in die Zielzellen." Hinter dieser "schlichten" Idee steckt jahrzehntelange Forschungsarbeit. Bereits in den 60er Jahren entwickelten Mediziner erstmals Methoden, um Medikamente per Magnet an den richtigen Ort im Körper zu transportieren. Dieses Verfahren "magnetic drug targeting" genannt, also, magnetische Arzneimitteltherapie, wurde intensiv weiterverfolgt und Mitte der 90er Jahre auch in der Krebsbehandlung beim Menschen eingesetzt. Ein Medizinerteam der Berliner Charité unter der Leitung von Prof. Andreas Lübbe wagte den Schritt und brachte Anti-Tumor-Wirkstoffe per Magnettechnologie in die vom Krebs befallenen Organe. Die sogenannte "Nanomagnetomedizin" war erfolgreich. Der Biochemiker Dr. Christian Plank erfuhr davon und spann den Gedanken weiter: "Was für kleine Arzneistoffe funktioniert, sollte doch auch für Nukleinsäuren - die Bausteine der Gene - funktionieren." Damit war der Grundstein für eine Gentherapie gelegt, die ohne virale Komponenten auskommt. Im Jahr 2000 begann Christian Plank am Institut für Experimentelle Onkologie mit der Entwicklung der Methode, der sogenannten Magnetofektion, und war bereits nach wenigen Monaten erfolgreich. Doch bevor die Technik so etabliert und sicher ist, dass sie auch beim Menschen eingesetzt werden kann, stehen noch eine Reihe von Untersuchungen an.

Technische Eleganz - mit Nabelschnurblut und Nanopartikeln

Jede der 13 an dem EU-Projekt beteiligten Arbeitsgruppen führt eine dieser Untersuchungen durch. Die Aufgabe von Dr. Christian Planks Arbeitsgruppe ist es, zwei entscheidende Prozesse miteinander zu verknüpfen: Erstens, die Gewinnung von blutbildenden Zellen (hämatopoetische Stammzellen) aus dem Nabelschnurblut mithilfe von magnetischen Nanopartikeln. Zweitens, die Verknüpfung dieser Stammzellen mit Gensequenzen - ebenfalls mithilfe magnetischer Nanopartikel. Kommen diese beiden Techniken zusammen, die magnetische Zellseparation und der magnetische Gentransfer außerhalb des Körpers, können die Wissenschaftler "gesunde" Blutvorläuferzellen auf schnelle und kontrollierte Art gewinnen. Werden diese gentherapeutisch behandelten Stammzellen dann in das Blut von Patienten wie beispielsweise den oben erwähnten "Bubble Kids" übertragen, könnten die neuen Blutzellen die genetisch defekten Zellen ersetzen. Ob dieser letzte Schritt gelingen kann, untersuchen die anderen Arbeitsgruppen des internationalen Projekts. "Wir haben Anlass zur Hoffnung, dass es funktionieren könnte", formuliert Dr. Christian Plank vorsichtig. Seine Zukunftsvision: "In drei bis fünf Jahren könnte eine Form dieser neuen Methode im Klinikum rechts der Isar in der Krebstherapie zum Einsatz kommen."

Über das Institut für Experimentelle Onkologie und Therapieforschung (IEOT) im Klinikum rechts der Isar der Technische Universität München

Unter der Leitung von Prof. Bernd Gänsbacher erforschen rund 40 Wissenschaftler und Wissenschaftlerinnen des Instituts neue Strategien zur Behandlung von Krebserkrankungen und genetisch bedingten Krankheiten. Dafür nutzt das Spezialistenteam moderne Methoden wie beispielsweise die Gen- und die Nanotechnologie. Neue Therapiestrategien testen die Forscher zunächst experimentell im Labor. Weisen die Ergebnisse auf eine Erfolg versprechende Methode hin, wird im nächsten Schritt untersucht, ob auch Patienten davon profitieren können. Die Vision: Neue Technologien vereinen im Kampf gegen den Krebs.

Dr. Fabienne Hübener | idw
Weitere Informationen:
http://www.med.tu-muenchen.de

Weitere Berichte zu: Gen Gentherapie Nanopartikel Onkologie Stammzelle

Weitere Nachrichten aus der Kategorie Förderungen Preise:

nachricht Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope
20.10.2017 | Freie Universität Berlin

nachricht Gitterdynamiken in ionischen Leitern
18.10.2017 | Justus-Liebig-Universität Gießen

Alle Nachrichten aus der Kategorie: Förderungen Preise >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie