Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Universität zu Köln nimmt Photoelektronenspektrometer von Philips entgegen

29.05.2013
Universität zu Köln nimmt Photoelektronenspektrometer von Philips entgegen

Die Übergabe ist ein weiterer Baustein für den Aufbau eines Analytik- und Anwenderzentrums mit dem Schwerpunkt Organische Elektronik in Köln. Der Initiator, Prof. Klaus Meerholz, nimmt das Gerät von Dr. Dietrich Bertram, Leiter des Philips Business Center OLED Lighting in Aachen, entgegen.

Das Gerät dient dazu, die elektronische Beschaffenheit von Metallen und Halbleitern in dünnen Schichten zu vermessen, und wird einen wertvollen Beitrag zur Klärung grundlegender und anwendungsorientierter Fragestellungen in der Organischen Elektronik leisten.

Die Organische Elektronik gilt als eine der Zukunftstechnologien, die unser tägliches Leben ähnlich stark verändern werden wie die Siliziumtechnologien in den vergangenen Jahrzehnten. So sollen beispielsweise neuartige Organische Leuchtdioden (OLEDs) als flexible Displays und großflächige Raumbeleuchtung oder Organische Solarzellen (OPV) auf Gebäuden für eine nachhaltige Energieversorgung eingesetzt werden.

In der Organischen Elektronik werden elektronische Bauteile aus organischen halbleitenden Verbindungen in dünnen Schichten auf Trägermaterialien unter Einsatz kostengünstiger und energiesparender Verfahren hergestellt. Das jährliche Marktvolumen der Organischen Elektronik wird weltweit auf bis zu 300 Mrd. US$ im Jahr 2027 prognostiziert.

Vor diesem Hintergrund hat das Ministerium für Innovation, Wissenschaft und Forschung des Landes NRW die Gründung des Kompetenzzentrums COPT.NRW (Center for Organic Production Technologies in North Rhine-Westphalia) initiiert, das Wirtschaft und Wissenschaft in NRW im Bereich der organischen Elektronik insbesondere auf den Ebenen Forschung, Entwicklung und Weiterbildung vernetzt. „Dass das Netzwerk enger wird, zeigen Aktivitäten auch außerhalb von geförderten Forschungsprojekten, wie diese Schenkung der Philips Technology GmbH“, erläutert der Vorsitzende, Prof. Klaus Meerholz von der Universität zu Köln. „Unsere Geräteausstattung konnte durch diese Anlage zur Photoelektronenspektroskopie (UPS) erweitert werden. Wir freuen uns sehr über dieses Gerät, das unsere bestehende Ausstattung sinnvoll ergänzt.“

Das Gerät wird Bestandteil des COPT Analytik- und Anwenderzentrums in Köln. Das Zentrum wird kleinen und mittelständischen Unternehmen (KMU) projektbezogenen Zugang zu modernster Forschungsinfrastruktur ermöglichen: Neben dem Testen und Entwickeln von Messtechnik können organische Halbleiter hergestellt und zu elektronischen Bauteilen verarbeitet werden.

Ein umfangreiches Repertoire neuester Analysemethoden, zu denen auch das heute übergebene Photoelektronenspektrometer zählt, wird zur Verfügung stehen. Der Startschuss für das Gesamtprojekt war die Bescheidübergabe für den Bau des Analytik- und Anwenderzentrums durch Frau Ministerin Schulze am 15. April dieses Jahres.

„Philips bringt die Anlage in den Forschungsverbund COPT ein, um damit schnellere Fortschritte im grundlegenden Verständnis von OLED zu ermöglichen“, sagt Dr. Dietrich Bertram, Leiter der OLED Aktivitäten bei der Philips Technologie GmbH. „Wir sehen dies aber auch als unseren Beitrag, den für die OLED-Industrialisierung benötigten Nachwuchs gezielt ausbilden zu können“, so Bertram weiter.

Die Ultrahochvakuumanlage für die Photoelektronen-Spektroskopie wird von Wissenschaftlern der Universität zu Köln betrieben. In vier miteinander verbundenen Kammern lassen sich dünne Schichten präparieren, um anschließend deren Oberflächen zu analysieren. Um eine Verunreinigung der empfindlichen Materialien zu vermeiden, arbeitet die Anlage unter Ultrahochvakuum.

„Ein vertieftes Wissen über die Eigenschaften der verwendeten Materialien ist für die Weiterentwicklung unserer Bauteile essentiell“, erläutert die Physikerin Dr. Selina Olthof, die das Gerät an der Universität zu Köln betreut. „Um hier neue Erkenntnisse zu gewinnen, nutzen wir den sogenannten Photoeffekt.“ Hierbei wird monochromatische elektromagnetische Strahlung auf einen Festkörper gestrahlt, um Elektronen herauszulösen. Da jedes Atom oder Molekül seine Elektronen mit einer charakteristischen Energie emittiert, kann man durch die Messung der Geschwindigkeiten dieser Elektronen Rückschlüsse auf die chemische Zusammensetzung sowie die elektronische Beschaffenheit der untersuchten Schicht ziehen.

Materialkombinationen gängiger sowie neuer Moleküle und Polymere können nun im Detail untersucht werden, wobei vor allem die Vermessung von Grenzflächen zwischen den Materialien von großem Interesse ist, da ungewollte Energiebarrieren einen entscheidenden Einfluss auf die Effizienz solcher Bauelementen haben. Dies wird einen wertvollen Beitrag leisten sowohl für die Grundlagenforschung an organischen Halbleitern als auch auf dem Weg zur Herstellung hocheffizienter Leuchtdioden und Solarzellen in den verschiedensten Anwendungsbereichen.

Die Philips Technologie GmbH ist ein Tochterunternehmen der Royal Philips Electronics mit Hauptsitz in den Niederlanden (121.000 Mitarbeiter in mehr als 100 Ländern). Das Unternehmen hat die OLED-Technologie unter dem Markennamen Lumiblade am Aachener Standort zusammengefasst. Hier forscht, entwickelt und fertigt das Unternehmen die modernste Lichtquelle der Welt. Bereits seit dem Jahr 2007 betreibt Philips in Aachen eine OLED-Linie. Mit einem Investment von über 40 Millionen Euro wurden die Kapazitäten im letzten Jahr massiv ausgebaut. Seit Aufnahme des Betriebs zum Ende des Jahres 2012 ist die neue OLED-Linie die weltweit größte Versuchsanlage zur Herstellung von OLEDs. Die hier gewonnenen Erkenntnisse fließen in zukünftige OLED-Produktionsanlagen ein und ebnen somit der OLED den Weg in den Massenmarkt.

Kontakt:
Universität zu Köln Dr. Patrick Honecker, Pressesprecher, Tel.: 0221 470-2202, E-Mail: patrick.honecker(at)uni-koeln.de

Philips Technologie GmbH, Dietmar Thomas, Communication Specialist, Telefon: +49 241/539-2356, E-Mail: dietmar.thomas@philips.com

Gabriele Rutzen | idw
Weitere Informationen:
http://www.uni-koeln.de
http://www.philips.com

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Leuchtende Nanoarchitekturen aus Galliumarsenid
22.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Neuer Sensor zur Messung der Luftströmung in Kühllagern von Obst und Gemüse
22.02.2018 | Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics