Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schichten statt Mischen

17.11.2015

Jülich-Aachener Forscherteam verbessert Energieeffizienz topologischer Isolatoren

Eine zu starke Erwärmung von Computerchips ist ein großes Hindernis für die Entwicklung schnellerer und leistungsfähigerer Rechner und Mobiltelefone. Abhilfe verspricht eine erst vor wenigen Jahren entdeckte Materialklasse: topologische Isolatoren, die Strom mit geringerem Widerstand und weniger Wärmeentwicklung leiten als herkömmliche Materialien.


Durch Variation der Schichtdicke von Halbleiter-Sandwiches aus Silizium, einem n-Halbleiter, und einem p-Halbleiter, lassen sich topologische Isolatoren maßschneidern.

Copyright: Forschungszentrum Jülich


Ein mathematischer Kniff – eine Abbildung der Energieniveaus der Oberflächenelektronen im reziproken Raum – zeigt den Bereich maximaler Energieeffizienz an.

Copyright: Forschungszentrum Jülich

Ein Team aus Jülich und Aachen hat eine Möglichkeit gefunden, die gewünschten Leitungseigenschaften solcher Materialien genauer und zuverlässiger einzustellen als es bisher möglich war (Nature Communications).

So genannte „topologische“ Materialien besitzen an ihren Oberflächen andere physikalische Eigenschaften als im Inneren. Topologische Isolatoren sind im Materialinneren praktisch Isolatoren, aber an ihren Oberflächen und Rändern leiten sie elektrischen Strom fast wie auf Schienen: schneller, mit geringerem Widerstand und weniger Wärmeentwicklung als herkömmliche Materialien.

Zusätzlich fungieren die Schienen für Elektronen als Einbahnstraßen. Der Eigendrehimpuls der Elektronen – der sogenannte Spin – bestimmt, in welche Richtung die Elektronen fließen können. Auch diese Materialeigenschaft ist nützlich für die Informationsverarbeitung und könnte die Entwicklung neuer spintronischer Bauelemente ermöglichen.

Forscher des Jülicher Peter Grünberg Instituts und der RWTH Aachen zeigten nun, wie sich die Leitfähigkeit und der Energiebedarf dieser Materialien optimieren lassen. Ihr Erfolgsrezept lautet stark vereinfacht: schichten statt mischen. Prof. Detlev Grützmacher vom Peter Grünberg Institut hatte die entscheidende Idee:

„Anstatt zwei Halbleiter unterschiedlichen Typs wie üblich zu legieren, um daraus einen topologischen Isolator zu gewinnen, haben wir mittels Molekularstrahlepitaxie beide Halbleiter Atomschicht für Atomschicht aufeinander geschichtet, dies wiederum auf einer Siliziumträgerschicht.“ Molekularstrahlepitaxie ist eine hochpräzise Methode, dünne kristalline Schichten herzustellen, und wird zunehmend nicht mehr nur in der Forschung sondern auch zur industriellen Produktion von Halbleiterstrukturen eingesetzt.

Auf diese Weise konnten die Forscher den atomaren Aufbau exakt kontrollieren, was sie mit ultrahochauflösender Elektronenmikroskopie dokumentierten. „Die perfekte atomare Zusammensetzung topologischer Isolatoren ist ganz entscheidend für die elektronischen Eigenschaften und damit die Energieeffizienz, aber bei Legierungen nur schwer kontrollierbar“, erläutert Dr. Lukasz Plucinski vom Peter Grünberg Institut.

Welche Schichtdicken mit optimalen Leitungseigenschaften einhergehen, fanden die Forscher mit der Technik der winkelaufgelösten Photoemissionsspektroskopie heraus. Dabei werden Proben mit Photonen beschossen, die Elektronen aus dem Material herauslösen. Deren Energie und Austrittswinkel werden gemessen und geben Auskunft über die Energie und die Verteilung der Elektronen an der Oberfläche der Probe.

Topologische Isolatoren können grundsätzlich auch mit Hilfe externer elektrischer Felder in Halbleiterlegierungen und anderen Materialien erzeugt werden. Bei der Sandwichmethode, die die Wissenschaftler im Rahmen der Jülich Aachen Research Alliance, Sektion „Future Information Technology“, gemeinsam entwickelt haben, ist dieser technische Aufwand unnötig und das Trägermaterial Silizium vereinfacht eine spätere Integration in Anwendungen.

Im vom Jülicher Peter Grünberg Institut koordinierten Virtuellen Institut für topologische Isolatoren (VITI) erforschen Wissenschaftler darüber hinaus weitere Nutzungsmöglichkeiten des neuen Materials in der Grundlagenforschung. So könnte es zum Beispiel den Nachweis neuer bisher nur theoretisch vorhergesagter Quantenphänomene ermöglichen, etwa von Quasipartikeln aus Elektronen und Leitungslöchern, die ein so genanntes topologisches Exziton-Kondensat bilden.

Originalveröffentlichung:
Realization of a vertical topological p-n junction in epitaxial Sb2Te3/Bi2Te3 heterostructures;
Markus Eschbach, Ewa Mlynczak, Jens Kellner, Jörn Kampmeier, Martin Lanius, Elmar Neumann, Christian Weyrich, Mathias Gehlmann, Pika Gospodaric, Sven Döring, Gregor Mussler, Nataliya Demarina, Martina Luysberg, Gustav Bihlmayer, Thomas Schäpers, Lukasz Plucinski, Stefan Blügel, Markus Morgenstern, Claus M. Schneider, Detlev Grützmacher;
Nature Communications (2015), DOI: 10.1038/ncomms9816

Weitere Informationen:
Forschungszentrum Jülich: www.fz-juelich.de
Pressemitteilung vom 29.2.2012 „Schienen für elektrischen Strom“: www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2012/12-06-29Virtuelles_Institut.html?nn=570024
Pressemitteilung vom 18.8.2011 „Blick in bisher ungeahnte Tiefen“: www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2011/11-08-18photoemissionsspektroskopie.html
Pressemitteilung vom 12.2.2009: „“Science": Neuartiger Quanteneffekt direkt beobachtet und erklärt“: www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2009/index1d0f_htm.html?nn=719084
Peter Grünberg Institut – Quanten-Theorie der Materialien (PGI-1): www.fz-juelich.de/pgi/pgi-1/DE/Home/home_node.html
Peter Grünberg Institut – Theoretische Nanoelektronik (PGI-2): www.fz-juelich.de/pgi/pgi-2/DE/Home/home_node.html
Peter Grünberg Institut – Mikrostrukturforschung (PGI-5): www.fz-juelich.de/pgi/pgi-5/DE/Home/home_node.html
Peter Grünberg Institut – Elektronische Eigenschaften (PGI-6): www.fz-juelich.de/pgi/pgi-6/
Peter Grünberg Institut – Halbleiter-Nanoelektronik (PGI-9): www.fz-juelich.de/pgi/pgi-9/DE/Home/home_node.html
Arbeitsgruppe Prof. Markus Morgenstern an der RWTH Aachen, II. Physikalisches Institut B: www.institut2b.physik.rwth-aachen.de/
Jülich Aachen Research Alliance, Sektion FIT (Fundamentals of Future Information Technology): www.jara.org/de/research/jara-fit/

Ansprechpartner:
Dr. Lukasz Plucinski, Forschungszentrum Jülich, Elektronische Eigenschaften (PGI-6), Tel. 02461 61-6684, E-Mail: l.plucinski@fz-juelich.de

Prof. Dr. Detlev Grützmacher, Forschungszentrum Jülich, Halbleiter-Nanoelektronik (PGI-9), Tel. 02461 61-2340, E-Mail: d.gruetzmacher@fz-juelich.de
Dr. Gustav Bihlmayer, Forschungszentrum Jülich, Quanten-Theorie der Materialien (PGI-1), Tel. 02461 61-4677, E-Mail: g.bihlmayer@fz-juelich.de
Prof. Dr. Markus Morgenstern, RWTH Aachen, II. Physikalisches Institut B, Tel. 0241 80-27076, E-Mail: mmorgens@physik.rwth-aachen.de

Pressekontakt:
Angela Wenzik, Wissenschaftsjournalistin, Forschungszentrum Jülich,
Tel. 02461 61-6048, E-Mail: a.wenzik@fz-juelich.de

Weitere Informationen:

http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2015/15-11-17schich...

Annette Stettien | Forschungszentrum Jülich

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht SmartMeter analysieren mit Algorithmen den Stromverbrauch
01.12.2016 | Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme IMS

nachricht Energiehybrid: Batterie trifft Superkondensator
01.12.2016 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie