Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Satellitentechnik: Jungfernflug ins Weltall geglückt

09.06.2016

Studierende der Luft- und Raumfahrtinformatik haben einen Sensor entwickelt, der seine Lage im Weltraum bestimmen kann. Bei einem Raketenflug im Norden Schwedens haben sie ihn getestet. Nun steht fest: Er ist zu Höherem berufen.

„Three...two...one...zero...engine running: Liftoff!“ Als REXUS20 am 15. März 2016 um 06:24 Uhr Ortszeit in Kiruna, der nördlichsten Stadt Schwedens, vom Grund des Esrange Space Centers abhob, erreichte die Spannung ihren Höhepunkt.


Das Würzburger PATHOS-Gerät hat einen Durchmesser von 35 Zentimetern und ist zwölf Zentimeter hoch. Für künftige Einsätze muss es deutlich kleiner gebaut werden.

(Foto: Team PATHOS)

15 Minuten dauerte der Flug ins Weltall, bei dem die knapp sechs Meter lange und 36 Zentimeter dicke Höhenforschungsrakete nacheinander Troposphäre, Mesosphäre und Stratosphäre passierte, um in der Thermosphäre in 77 Kilometer Höhe kehrt zu machen und mit Hilfe eines Fallschirms sicher und wohlbehalten wieder auf der Erde zu landen.

Knapp drei Monate später, nach Auswertung der rund 10.000 Bilder, die eine Kamera während des Fluges eingefangen hat, wissen neun Studierende der Luft- und Raumfahrtinformatik der Universität Würzburg: Ihr Vorhaben, auf das sie 17 Monate lang hingearbeitet hatten, war erfolgreich. Sie haben es geschafft, einen Sensor zu entwickeln, der seine Lage im Weltraum bestimmen kann.

Neun Studierende haben den Sensor gebaut

Position-vector Acquisition Through Horizon Observation System, kurz PATHOS: So heißt der Sensor, der in Größe und Form einer Pizza ähnelt und der aus Kamera, Mini-Computer und weiteren elektrischen Komponenten besteht. Moritz Aicher, Kevin Chmiela, Jonas Ehnle, Elke Heidmann, Bastian Klein, Felix Klesen, Florian Kunzi, Liviu Stamat und Dominik Wagner haben ihn im Rahmen des REXUS/BEXUS-Programms gebaut.

Bei diesem startet das Deutsche Zentrum für Luft- und Raumfahrt (DLR) in Kooperation mit dem Swedish National Space Board (SNSB) jedes Jahr zwei Höhenforschungsraketen (REXUS) und zwei Stratosphärenballons (BEXUS), auf denen Studierende selbst entwickelte Experimente unter Weltraumbedingungen testen können.

„Begonnen hat alles im Herbst 2014“, erinnert sich Elke Heidmann, eine der Studierenden. Ihr Team, das von Hakan Kayal, Professor für Raumfahrttechnik an der Universität Würzburg, und dessen Mitarbeitern betreut wird, hatte sich erfolgreich beworben und wurde schließlich für das Programm ausgewählt. „Wir haben zunächst ein detailliertes Konzept entwickelt, Komponenten ausgewählt und wichtige Vorbereitungen getroffen“, erzählt die Informatikerin. Anschließend sei es an die Programmierung der Software gegangen.

Wie PATHOS seine Lage im Weltraum erkennt

Deren Herzstück ist ein Algorithmus, den die Studierenden über mehrere Monate hinweg geschrieben und später in Form eines Mini-Computers auf dem PATHOS-Sensor installiert haben. „Der Algorithmus hat die Aufgabe, die Bilder, die während des Weltraumflugs entstehen, zu verarbeiten“, erklärt Heidmann. „Hat er das geschafft, erkennt er den Horizont der Erde und verwendet diese Linie, um einen Vektor in Richtung Erdmittelpunkt zu berechnen.“ Auf diese Weise könne er die Lage des Sensors exakt bestimmen.

Warum ein normaler Computer im Weltall versagen würde

Den Raketenflug, bei dem die Studierenden PATHOS testen konnten, hatten sie zuvor mehrfach simuliert. Möglich machte das die Thermal-Vakuum-Kammer im Institut für Informatik, in der derselbe Luftdruck herrscht wie im Weltall – nämlich nahezu Vakuum. Diesen Umstand mussten die Studierenden auch beim Bau des Computers berücksichtigen, wie Professor Kayal erklärt: „Im Weltraum gibt es keine Luft. Das heißt, normale Lüfter, die typischerweise in einem PC verbaut sind, hätten keinerlei Wirkung. Deshalb würde ein durchschnittlicher Computer, wenn man ihn ins Weltall schicken würde, überhitzen und nach kurzer Zeit kaputt gehen.“

Umso erfreuter waren die Studierenden, dass das mit ihrem Computer nicht passierte. „Er hat die Tests in der Thermal-Vakuum-Kammer bei hohen Temperaturen erfolgreich bestanden“, berichtet Heidmann. Und das Entscheidende: Auch den Raketenflug überstand der PC schadlos. „Er hat gut verwertbare Bilder gesendet und den Horizont der Erde eindeutig erkannt“, freut sich die Studentin über das Ergebnis der Auswertung. Auch Professor Kayal ist begeistert: „Das ist ein voller Erfolg, den sich die Studierenden durch ihre harte Arbeit redlich verdient haben.“

Wo der Sensor später einmal verwendet werden könnte

Nachdem PATHOS seinen Jungfernflug ins Weltall bravourös gemeistert hat, steht für die Studierenden fest: Das System ist zu Höherem berufen. „Es könnte in einigen Jahren in einem Kleinsatelliten der Universität verwendet werden“, hofft Heidmann.

Konkret gehe es darum, Satelliten künftig zu helfen, wenn diese ins Taumeln geraten. „Wenn das passiert, ist es wichtig, den Satelliten so schnell wie möglich wieder zu stabilisieren. Dazu muss er aber wissen, wo er sich gerade befindet; er benötigt einen Bezugspunkt, an dem er sich orientieren kann. Diesen Bezugspunkt liefert PATHOS.“

Bis es allerdings soweit ist, muss das Gerät noch einmal deutlich kleiner werden. Denn SONATE, ein Nanosatellit der Universität, den die Studierenden als Testobjekt ins Auge gefasst haben, hat gerade mal die Maße eines länglichen Schuhkartons. „Das ist im Moment noch Zukunftsmusik“, betont Heidmann. Nun gehe es zunächst darum, die Auswertung des Fluges in Form einer Abschlussdokumentation vorzulegen. „Damit wäre das Projekt offiziell beendet.“ Inoffiziell, da sind sich die Studierenden einig, werden sie es weiterführen.

Stichwort: REXUS/BEXUS

Das Programm REXUS/BEXUS (Raketen- und Ballon-Experimente für Universitäts-Studenten) bietet Studierenden die Möglichkeit, den vollständigen Ablauf eines Raumfahrtprojekts kennenzulernen. Dieses beginnt mit der Idee und Planung und endet mit der Veröffentlichung der Ergebnisse. Dazwischen entwerfen, bauen und testen die Studierenden ihre Experimentausrüstung, nehmen aktiv an der Ballon- oder Raketen-Startkampagne teil, führen die Versuche während des Flugs durch und werten die gewonnenen Daten aus.

Das DLR-Raumfahrtmanagement und die Schwedische Nationale Raumfahrt-Behörde SNSB haben ein Abkommen zur gemeinsamen Durchführung des Programms geschlossen. Daher stehen je 50 Prozent der Raketen- und Ballon-Nutzlasten deutschen und schwedischen Studierenden zur Verfügung. SNSB hat den schwedischen Anteil für Studierende aller ESA-Mitgliedsstaaten sowie der kooperierenden Staaten geöffnet. Jährlich im Juni schreiben die Raumfahrt-Agenturen den Ideenwettbewerb für BEXUS-Flüge im folgenden Jahr und REXUS-Flüge im übernächsten Jahr neu aus.

Kontakte

Elke Heidmann, PATHOS-Projekt, elke.heidmann@pathos-rexus.eu, team@pathos-rexus.eu

Prof. Dr. Hakan Kayal, Lehrstuhl für Informatik VIII, T (0931) 31-86649,
hakan.kayal@uni-wuerzburg.de

Hinweis für Redaktionen und Journalisten:

Fotos vom Projekt hat das Team PATHOS zum Download für Pressezwecke auf Google Drive bereitgestellt. Fotocredit jeweils „Team PATHOS“:
https://drive.google.com/folderview?id=0B9E9rdHxkodSaU1IYTREZWtWRE0&usp=driv...

Weitere Informationen:

http://www.pathos-rexus.eu Zur Website von PATHOS
http://www.rexusbexus.net/ Zur Website von REXUS/BEXUS
http://www.dlr.de/rd/desktopdefault.aspx/tabid-2282/3421_read-10516/ Zur Website des DLR

Robert Emmerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Bald bessere Akkus?
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein
20.09.2017 | Technische Universität Hamburg-Harburg

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Granulare Materie blitzschnell im Bild

21.09.2017 | Verfahrenstechnologie

Hochpräzise Verschaltung in der Hirnrinde

21.09.2017 | Biowissenschaften Chemie

Überleben auf der Schneeball-Erde

21.09.2017 | Biowissenschaften Chemie