Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Organische Elektronik – eine heiße Sache

28.03.2013
Organische Halbleiter könnten die Elektronik in vielen Bereichen revolutionieren.

Inzwischen erreichen Bauelemente schon so hohe Leistungen, dass sie in kleinen Gräten wie Mobiltelefonen zum Einsatz kommen. Bei größeren Geräten heizen sich die organischen Bauelemente jedoch so unkontrolliert auf, dass sie zusammenbrechen oder ungleichmäßig Strom leiten. Physiker der TU Dresden und Mathematiker des WIAS haben nun die typischen Rückkopplungseffekte gemeinsam analysiert und beschreiben diese für organische Halbleiter in den Physical Review Letters.


Organische Leuchtdioden sind flächige Strahler, die hauchdünn auch auf flexiblen Substraten aufgetragen werden können. In Zukunft wird man sie öfter als Beleuchtungsmittel in Form größerer Module wiederfinden. Insbesondere bei sehr hohen Helligkeiten können dann Inhomogenitäten unter Selbsterwärmung auftreten.

Foto: IAPP

Als die Displays bei Mobiltelefonen immer größer wurden, musste man zunächst immer genau von vorn auf das Gerät schauen, um etwas erkennen zu können – die klassischen LEDs strahlten nur in eine Richtung. Bei einem modernen Smartphone mit organischen LEDs im Display gibt es dieses Problem nicht mehr: Das Licht strahlt in alle Richtungen, und auch aus einem schrägen Blickwinkel ist alles gut zu erkennen. Auch großflächige organische LEDs gibt es schon, sie ermöglichen ganz neue Formen der Beleuchtung von Räumen.

Doch wenn der Stromfluss zu stark wird, treten plötzlich Inhomogenitäten in der Helligkeit auf, die Fläche erscheint fleckig. Ein weiteres Anwendungsfeld ist die Solarenergie: Mit organischen Solarzellen lassen sich Folien herstellen, die kleine Mengen Strom produzieren können, zum Beispiel für unterwegs als „Energy to go“.

Für organische Bauteile gilt das schon lange bekannte Arrhenius-Gesetz: Die elektrische Leitfähigkeit nimmt mit steigender Temperatur stark zu, so dass der Strom durch das Bauteil entsprechend ansteigt und das Material erwärmt. So entsteht eine Rückkopplungsschleife, in der das Bauteil immer weiter aufgeheizt wird – Experimente enden dann häufig damit, dass das Bauteil zerschossen wird. Bislang waren solche Effekte nur bei inorganischen Halbleitern bekannt.

Bauelemente, die so stark auf Temperaturen reagieren, dass Rückkopplungen entstehen können, werden Thermistoren genannt. Insbesondere bei Leistungselektronik werden gezielt Thermistoren eingesetzt. Inzwischen erreichen organische Halbleiter aber ebenfalls den Bereich der Selbsterwärmung.

Das Prinzip ist eigentlich schon lange bekannt, allerdings war noch niemandem aufgefallen, dass es auch in der organischen Elektronik gilt.

Dr. Thomas Koprucki vom WIAS sagt: „Wir merkten, dass organische Halbleiter doch prädestiniert für elektro-thermische Rückkopplungseffekte sein sollten. Das hatte bisher noch niemand gesehen. Damit konnten wir das Augenmerk unserer Dresdener Kollegen bei den Messungen genau auf die richtige Stelle lenken.“

Die Experimente hatten bereits gezeigt, dass die Ströme bei Selbsterwärmung enorm stiegen.

Wenn die Berechnungen aber stimmten, musste es einen Punkt geben, ab dem trotz einer Steigerung der Stromstärke die Spannung zurückgeht – was der Intuition widerspricht. Das würde bedeuten, dass es zwei unterschiedliche stabile Stromstärke-Niveaus gäbe, die sich in einem kleinen Bereich der Spannung überschneiden – dort können sie von einem Niveau auf das andere umkippen. Durch diese Modell-Vorhersagen auf die richtige Spur gebracht, konnten die Physiker der TU Dresden ihre Experimente so anpassen, dass sie genau diesen Effekt für organische Halbleiter tatsächlich messen konnten.

Dabei wurden für die Kohlenstoffverbindung C60 die Abläufe im Bauteil zwischen zwei Punkten gemessen. Um den Effekt in seinem vollen Umfang zu erfassen, musste nicht nur ein Rückgang der Spannung gezeigt werden, sondern auch das Umschalten zwischen den zwei stabilen Stromstärke-Niveaus.

Anhand der Modellrechnung war von vornherein klar, dass ein zerstörungsfreier Nachweis nur möglich ist, wenn das Bauteil gekühlt wird und durch einen Vorwiderstand geschützt wird. Damit war es den Physikern dann möglich, tatsächlich die Bistabilität des Bauelementes aufzuzeichnen. Bei den beiden Umschaltspannungen wechselte der Strom abrupt seine Stärke um einen Faktor 10.

Axel Fischer vom Institut für Angewandte Photophysik (IAPP) der TU Dresden erläutert: „Wir haben die Kohlenstoffverbindung C60 für unsere Messungen verwendet, weil diese sehr temperaturstabil ist. Damit können wir das Arrhenius-Gesetz in Reinkultur beobachten. Außerdem erreichen Schichten aus C60 bereits bei kleinen Spannungen sehr hohe Ströme, so dass die typischen Thermistoreffekte einfach nachgewiesen werden können.“

Mit dem erweiterten Verständnis der Selbsterwärmung in organischen Halbleitern können die Forscher organische Bauelemente nun so weiterentwickeln, dass sie die störenden Effekte minimieren, z. B. durch eine geometrisch andere Konstruktion der Wärmeableitung und der elektrischen Kontakte. So könnten dann großflächige Leuchtfolien in Zukunft gleichmäßiges Licht abstrahlen.

Weitere Informationen:
http://link.aps.org/doi/10.1103/PhysRevLett.110.126601
- Veröffentlichung in den Physical Review Letters

Gesine Wiemer | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.fv-berlin.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Stromindikatorklemmen mit Push-in-Anschluss
24.07.2017 | PHOENIX CONTACT GmbH & Co.KG

nachricht Leiterplatten-Steckverbinder werkzeuglos montieren
24.07.2017 | PHOENIX CONTACT GmbH & Co.KG

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Basis für neue medikamentöse Therapie bei Demenz

27.07.2017 | Biowissenschaften Chemie

Aus Potenzial Erfolge machen: 30 Rittaler schließen Nachqualifizierung erfolgreich ab

27.07.2017 | Unternehmensmeldung

Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse

27.07.2017 | Biowissenschaften Chemie