Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Organische Elektronik – eine heiße Sache

28.03.2013
Organische Halbleiter könnten die Elektronik in vielen Bereichen revolutionieren.

Inzwischen erreichen Bauelemente schon so hohe Leistungen, dass sie in kleinen Gräten wie Mobiltelefonen zum Einsatz kommen. Bei größeren Geräten heizen sich die organischen Bauelemente jedoch so unkontrolliert auf, dass sie zusammenbrechen oder ungleichmäßig Strom leiten. Physiker der TU Dresden und Mathematiker des WIAS haben nun die typischen Rückkopplungseffekte gemeinsam analysiert und beschreiben diese für organische Halbleiter in den Physical Review Letters.


Organische Leuchtdioden sind flächige Strahler, die hauchdünn auch auf flexiblen Substraten aufgetragen werden können. In Zukunft wird man sie öfter als Beleuchtungsmittel in Form größerer Module wiederfinden. Insbesondere bei sehr hohen Helligkeiten können dann Inhomogenitäten unter Selbsterwärmung auftreten.

Foto: IAPP

Als die Displays bei Mobiltelefonen immer größer wurden, musste man zunächst immer genau von vorn auf das Gerät schauen, um etwas erkennen zu können – die klassischen LEDs strahlten nur in eine Richtung. Bei einem modernen Smartphone mit organischen LEDs im Display gibt es dieses Problem nicht mehr: Das Licht strahlt in alle Richtungen, und auch aus einem schrägen Blickwinkel ist alles gut zu erkennen. Auch großflächige organische LEDs gibt es schon, sie ermöglichen ganz neue Formen der Beleuchtung von Räumen.

Doch wenn der Stromfluss zu stark wird, treten plötzlich Inhomogenitäten in der Helligkeit auf, die Fläche erscheint fleckig. Ein weiteres Anwendungsfeld ist die Solarenergie: Mit organischen Solarzellen lassen sich Folien herstellen, die kleine Mengen Strom produzieren können, zum Beispiel für unterwegs als „Energy to go“.

Für organische Bauteile gilt das schon lange bekannte Arrhenius-Gesetz: Die elektrische Leitfähigkeit nimmt mit steigender Temperatur stark zu, so dass der Strom durch das Bauteil entsprechend ansteigt und das Material erwärmt. So entsteht eine Rückkopplungsschleife, in der das Bauteil immer weiter aufgeheizt wird – Experimente enden dann häufig damit, dass das Bauteil zerschossen wird. Bislang waren solche Effekte nur bei inorganischen Halbleitern bekannt.

Bauelemente, die so stark auf Temperaturen reagieren, dass Rückkopplungen entstehen können, werden Thermistoren genannt. Insbesondere bei Leistungselektronik werden gezielt Thermistoren eingesetzt. Inzwischen erreichen organische Halbleiter aber ebenfalls den Bereich der Selbsterwärmung.

Das Prinzip ist eigentlich schon lange bekannt, allerdings war noch niemandem aufgefallen, dass es auch in der organischen Elektronik gilt.

Dr. Thomas Koprucki vom WIAS sagt: „Wir merkten, dass organische Halbleiter doch prädestiniert für elektro-thermische Rückkopplungseffekte sein sollten. Das hatte bisher noch niemand gesehen. Damit konnten wir das Augenmerk unserer Dresdener Kollegen bei den Messungen genau auf die richtige Stelle lenken.“

Die Experimente hatten bereits gezeigt, dass die Ströme bei Selbsterwärmung enorm stiegen.

Wenn die Berechnungen aber stimmten, musste es einen Punkt geben, ab dem trotz einer Steigerung der Stromstärke die Spannung zurückgeht – was der Intuition widerspricht. Das würde bedeuten, dass es zwei unterschiedliche stabile Stromstärke-Niveaus gäbe, die sich in einem kleinen Bereich der Spannung überschneiden – dort können sie von einem Niveau auf das andere umkippen. Durch diese Modell-Vorhersagen auf die richtige Spur gebracht, konnten die Physiker der TU Dresden ihre Experimente so anpassen, dass sie genau diesen Effekt für organische Halbleiter tatsächlich messen konnten.

Dabei wurden für die Kohlenstoffverbindung C60 die Abläufe im Bauteil zwischen zwei Punkten gemessen. Um den Effekt in seinem vollen Umfang zu erfassen, musste nicht nur ein Rückgang der Spannung gezeigt werden, sondern auch das Umschalten zwischen den zwei stabilen Stromstärke-Niveaus.

Anhand der Modellrechnung war von vornherein klar, dass ein zerstörungsfreier Nachweis nur möglich ist, wenn das Bauteil gekühlt wird und durch einen Vorwiderstand geschützt wird. Damit war es den Physikern dann möglich, tatsächlich die Bistabilität des Bauelementes aufzuzeichnen. Bei den beiden Umschaltspannungen wechselte der Strom abrupt seine Stärke um einen Faktor 10.

Axel Fischer vom Institut für Angewandte Photophysik (IAPP) der TU Dresden erläutert: „Wir haben die Kohlenstoffverbindung C60 für unsere Messungen verwendet, weil diese sehr temperaturstabil ist. Damit können wir das Arrhenius-Gesetz in Reinkultur beobachten. Außerdem erreichen Schichten aus C60 bereits bei kleinen Spannungen sehr hohe Ströme, so dass die typischen Thermistoreffekte einfach nachgewiesen werden können.“

Mit dem erweiterten Verständnis der Selbsterwärmung in organischen Halbleitern können die Forscher organische Bauelemente nun so weiterentwickeln, dass sie die störenden Effekte minimieren, z. B. durch eine geometrisch andere Konstruktion der Wärmeableitung und der elektrischen Kontakte. So könnten dann großflächige Leuchtfolien in Zukunft gleichmäßiges Licht abstrahlen.

Weitere Informationen:
http://link.aps.org/doi/10.1103/PhysRevLett.110.126601
- Veröffentlichung in den Physical Review Letters

Gesine Wiemer | Forschungsverbund Berlin e.V.
Weitere Informationen:
http://www.fv-berlin.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Faszination Weltall - Erlanger Forscher züchten Kristalle in der Schwerelosigkeit
15.06.2018 | Fraunhofer IISB

nachricht FlexFuture! Biogas sorgt für stabile Netze
11.06.2018 | Deutsches Biomasseforschungszentrum

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 in Shanghai

Die AchemAsia geht in ihr viertes Jahrzehnt und bricht auf zu neuen Ufern: Das International Expo and Innovation Forum for Sustainable Chemical Production findet vom 21. bis 23. Mai 2019 in Shanghai, China statt. Gleichzeitig erhält die Veranstaltung ein aktuelles Profil: Die elfte Ausgabe fokussiert auf Themen, die für Chinas Prozessindustrie besonders relevant sind, und legt den Schwerpunkt auf Nachhaltigkeit und Innovation.

1989 wurde die AchemAsia als Spin-Off der ACHEMA ins Leben gerufen, um die Bedürfnisse der sich damals noch entwickelnden Iindustrie in China zu erfüllen. Seit...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: Li-Fi erstmals für das industrielle Internet der Dinge getestet

Mit einer Abschlusspräsentation im BMW Werk München wurde das BMBF-geförderte Projekt OWICELLS erfolgreich abgeschlossen. Dabei wurde eine Li-Fi Kommunikation zu einem mobilen Roboter in einer 5x5m² Fertigungszelle demonstriert, der produktionsübliche Vorgänge durchführt (Teile schweißen, umlegen und prüfen). Die robuste, optische Drahtlosübertragung beruht auf räumlicher Diversität, d.h. Daten werden von mehreren LEDs und mehreren Photodioden gleichzeitig gesendet und empfangen. Das System kann Daten mit mehr als 100 Mbit/s und fünf Millisekunden Latenz übertragen.

Moderne Produktionstechniken in der Automobilindustrie müssen flexibler werden, um sich an individuelle Kundenwünsche anpassen zu können. Forscher untersuchen...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: ALMA entdeckt Trio von Baby-Planeten rund um neugeborenen Stern

Neuartige Technik, um die jüngsten Planeten in unserer Galaxis zu finden

Zwei unabhängige Astronomenteams haben mit ALMA überzeugende Belege dafür gefunden, dass sich drei junge Planeten im Orbit um den Säuglingsstern HD 163296...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Künstliche Intelligenz – Schafft der Mensch seine Arbeit ab?

15.06.2018 | Veranstaltungen

Internationale Konferenz zur Asteroidenforschung in Garching

13.06.2018 | Veranstaltungen

Meteoriteneinschläge und Spektralfarben: HITS bei Explore Science 2018

11.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

EMAG auf der AMB: Hochproduktive Lösungen für die vernetzte Automotive-Produktion

15.06.2018 | Messenachrichten

AchemAsia 2019 in Shanghai

15.06.2018 | Messenachrichten

Dem Fettfinger zu Leibe rücken: Neuer Nanolack soll Antifingerprint-Oberflächen schaffen

15.06.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics