Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Brennstoff entsteht aus Alt-Kunststoff und Biomasse

10.01.2014
Der Lehrstuhl für Energie- und Umweltverfahrenstechnik an der Universität Siegen und ein Hilchenbacher Unternehmen kooperieren: Kunststoffe aus Altautos sollen energetisch verwertet werden.

Glaubt man Medienberichten, beträgt das Durchschnittsalter von Autos in Deutschland etwas über acht Jahre. Das schließt aber nicht aus, dass es noch wesentlich ältere fahrtaugliche Karossen im Straßenverkehr gibt.


So sieht das neue Granulat aus.

Fest steht jedoch: Die Lebenszeit von Automobilen ist begrenzt. Irgendwann werden selbst der flotteste Flitzer und der zäheste Dauerläufer aus dem Verkehr gezogen. Dann steht die Entsorgung an. Dabei sollten laut Altautoverordnung rund 95 Prozent der Bestandteile einer Wiederverwendung bzw. Wiederverwertung zugeführt werden. Für ganz viele Auto-Bestandteile ist Recycling bereits möglich.

Etwas schwieriger steht es um die Wiederverwendung und Wiederverwertung der Kunststoff-Bestandteile von Pkw – seien es Armaturenbretter, Teppichböden oder Sitzpolster. Diese landen bislang als Mischkunststoffe entweder auf Deponien oder werden mit recht schlechtem Wirkungsgrad in Müllverbrennungsanlagen verbrannt. Das soll sich ändern.

Beim Projekt „Innovative Mischbrennstoffgranulate aus Schredderrückständen des Automobilrecyclings und heimischen Energieträgern“ arbeiten der Lehrstuhl für Energie- und Umweltverfahrenstechnik der Universität Siegen und dessen Inhaber, Prof. Dr.-Ing. Wolfgang Krumm mit seinem Team, und die Firma SiCon mit Sitz in Hilchenbach eng zusammen. Der Industriepartner entwickelt und fertigt Recyclinganlagen für die Alt-Autoverwertung.

Das Projekt mit dem Kürzel „ReGran“ ist am 1. November 2013 offiziell angelaufen. Finanziert wird es nicht zuletzt vom Bundeswirtschaftsministerium über die Arbeitsgemeinschaft Industrieller Forschungseinrichtungen (AiF) und deren Initiative „Zukunftsinnovation Mittelstand“ (ZIM). 175.000 Euro erhält die Universität Siegen für die Dauer von zwei Jahren. Auch das beteiligte Unternehmen erhält besagte Summe, muss diese aber aus Eigenmitteln verdoppeln, so dass insgesamt mehr als eine halbe Mill. Euro zur Verfügung stehen.

Das ins Auge gefasste Verfahren hört sich erst einmal simpel an, hat es aber bei genauem Hinsehen in sich. Die zu entsorgenden Kunststoffteile sind durch Schreddern stark zerkleinert, wobei auch ein erheblicher Anteil aus faserigen Flusen besteht. Diese Flusen werden dann gemeinsam mit einem organischen Brennstoff - Waldrestholz, Sägespäne, Braunkohlestaub, Gummimehl aus Altreifenverwertung, zerkleinerte Energiepflanzen wie Miscantus oder ähnliches Material - in einen beheizten Eirich-Intensivmischer gegeben.

In der Versuchsanlage, die Anfang 2014 an der Universität Siegen aufgebaut wird, erfolgt das Beheizen des Mischers mit elektrischem Strom. Entsprechende orientierende Vorversuche wurden bereits im Technikum der Firma Eirich in Hardheim durchgeführt. Im industriellen Betrieb werden später größere Mischer mit Abwärme beheizt.

Krumm: „Wir brauchen ein Temperaturniveau von etwa 200° C.“ Der Mischer selbst dreht sich; in seinem Inneren befinden sich Werkzeuge, die sich ebenfalls drehen. Unter der Wärmeeinwirkung schmelzen die Kunststofffasern auf und verbinden sich durch Drehung von Mischbehälter und -werkzeug mit den anderen zugeführten Brennstoffen. So entsteht kugelförmiges Granulat. Dieses wird aus dem Mischer gekippt und erkaltet. Das Granulat, dessen Größe mithilfe von Parametern wie Temperatur, Drehgeschwindigkeit von Mischbehälter und -werkzeug und Kunststoff-Biomasse-Mischung eingestellt werden kann, soll als Brennstoff in Zementdrehöfen oder in Kraftwerken zum Einsatz kommen. Krumm: „Wir haben dann einen definierten Brennstoff mit bestimmten Brenneigenschaften.“

Bis dahin liegt aber noch viel Forschungsarbeit vor Prof. Krumm und seinem Team. Krumm: „Wir müssen erst herausfinden, ob die biogenen Energieträger wirklich nach unseren Vorstellungen eingebunden werden können, wie das optimale Mischverhältnis zwischen Kunststoffflusen und Biomasse aussieht, wie es um die optimale Temperatur im Mischer bestellt ist und um dessen optimale Drehgeschwindigkeit. Kurz: „Eine Vielzahl von Parametern muss stimmen und aufeinander abgestimmt sein, um ein möglichst gutes Ergebnis hinsichtlich der Stabilität und der Verbrennungs- und Vergasungseigenschaften des Brennstoffs zu erzielen.“ Einen ganz besonderen Vorteil besitzt dieser neue Brennstoff aus Sicht der Wissenschaftler: „Wir können Additiva zugeben.“ Will heißen: Durch die Beigabe von Zusatzstoffen wie beispielsweise Kalkstein erhoffen sich die Forscher, die Schadstoffbildung bei der Verbrennung reduzieren zu können.

Ist der Brennstoff erst entwickelt, geht die Forschungsarbeit weiter. Krumm: „Wir müssen herausfinden, welche Brenneigenschaften er hat, und ob sich durch Vergasung qualitativ hochwertiges Produktgas gewinnen lässt, das einerseits als Erdgasersatz Verwendung finden oder aus dem andererseits Wasserstoff abgetrennt werden kann.“ Auch die bereits erwähnte Verminderung von Schadstoffen durch Additiva wird in vorhandenen Festbett-und Wirbelschichtreaktoren, die sich im Technikum auf dem Campus Adolf-Reichwein-Straße befinden, getestet und gegebenenfalls weiter optimiert.

Katja Knoche | idw
Weitere Informationen:
http://www.uni-siegen.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht DFKI-Roboter erkunden autonom Lavahöhlen auf Teneriffa
21.11.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Digitale Messtaster von WayCon – höchst präzise und vielseitig einsetzbar
14.11.2017 | WayCon Positionsmesstechnik GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

Neues Elektro-Forschungsfahrzeug am Institut für Mikroelektronische Systeme

21.11.2017 | Veranstaltungen

Raumfahrtkolloquium: Technologien für die Raumfahrt von morgen

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neurobiologie - Die Chemie der Erinnerung

21.11.2017 | Biowissenschaften Chemie

Geheime Datensammler auf dem Smartphone enttarnen

21.11.2017 | Informationstechnologie

Neue Gene für das Risiko von allergischen Erkrankungen entdeckt

21.11.2017 | Studien Analysen