Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neuer Brennstoff entsteht aus Alt-Kunststoff und Biomasse

10.01.2014
Der Lehrstuhl für Energie- und Umweltverfahrenstechnik an der Universität Siegen und ein Hilchenbacher Unternehmen kooperieren: Kunststoffe aus Altautos sollen energetisch verwertet werden.

Glaubt man Medienberichten, beträgt das Durchschnittsalter von Autos in Deutschland etwas über acht Jahre. Das schließt aber nicht aus, dass es noch wesentlich ältere fahrtaugliche Karossen im Straßenverkehr gibt.


So sieht das neue Granulat aus.

Fest steht jedoch: Die Lebenszeit von Automobilen ist begrenzt. Irgendwann werden selbst der flotteste Flitzer und der zäheste Dauerläufer aus dem Verkehr gezogen. Dann steht die Entsorgung an. Dabei sollten laut Altautoverordnung rund 95 Prozent der Bestandteile einer Wiederverwendung bzw. Wiederverwertung zugeführt werden. Für ganz viele Auto-Bestandteile ist Recycling bereits möglich.

Etwas schwieriger steht es um die Wiederverwendung und Wiederverwertung der Kunststoff-Bestandteile von Pkw – seien es Armaturenbretter, Teppichböden oder Sitzpolster. Diese landen bislang als Mischkunststoffe entweder auf Deponien oder werden mit recht schlechtem Wirkungsgrad in Müllverbrennungsanlagen verbrannt. Das soll sich ändern.

Beim Projekt „Innovative Mischbrennstoffgranulate aus Schredderrückständen des Automobilrecyclings und heimischen Energieträgern“ arbeiten der Lehrstuhl für Energie- und Umweltverfahrenstechnik der Universität Siegen und dessen Inhaber, Prof. Dr.-Ing. Wolfgang Krumm mit seinem Team, und die Firma SiCon mit Sitz in Hilchenbach eng zusammen. Der Industriepartner entwickelt und fertigt Recyclinganlagen für die Alt-Autoverwertung.

Das Projekt mit dem Kürzel „ReGran“ ist am 1. November 2013 offiziell angelaufen. Finanziert wird es nicht zuletzt vom Bundeswirtschaftsministerium über die Arbeitsgemeinschaft Industrieller Forschungseinrichtungen (AiF) und deren Initiative „Zukunftsinnovation Mittelstand“ (ZIM). 175.000 Euro erhält die Universität Siegen für die Dauer von zwei Jahren. Auch das beteiligte Unternehmen erhält besagte Summe, muss diese aber aus Eigenmitteln verdoppeln, so dass insgesamt mehr als eine halbe Mill. Euro zur Verfügung stehen.

Das ins Auge gefasste Verfahren hört sich erst einmal simpel an, hat es aber bei genauem Hinsehen in sich. Die zu entsorgenden Kunststoffteile sind durch Schreddern stark zerkleinert, wobei auch ein erheblicher Anteil aus faserigen Flusen besteht. Diese Flusen werden dann gemeinsam mit einem organischen Brennstoff - Waldrestholz, Sägespäne, Braunkohlestaub, Gummimehl aus Altreifenverwertung, zerkleinerte Energiepflanzen wie Miscantus oder ähnliches Material - in einen beheizten Eirich-Intensivmischer gegeben.

In der Versuchsanlage, die Anfang 2014 an der Universität Siegen aufgebaut wird, erfolgt das Beheizen des Mischers mit elektrischem Strom. Entsprechende orientierende Vorversuche wurden bereits im Technikum der Firma Eirich in Hardheim durchgeführt. Im industriellen Betrieb werden später größere Mischer mit Abwärme beheizt.

Krumm: „Wir brauchen ein Temperaturniveau von etwa 200° C.“ Der Mischer selbst dreht sich; in seinem Inneren befinden sich Werkzeuge, die sich ebenfalls drehen. Unter der Wärmeeinwirkung schmelzen die Kunststofffasern auf und verbinden sich durch Drehung von Mischbehälter und -werkzeug mit den anderen zugeführten Brennstoffen. So entsteht kugelförmiges Granulat. Dieses wird aus dem Mischer gekippt und erkaltet. Das Granulat, dessen Größe mithilfe von Parametern wie Temperatur, Drehgeschwindigkeit von Mischbehälter und -werkzeug und Kunststoff-Biomasse-Mischung eingestellt werden kann, soll als Brennstoff in Zementdrehöfen oder in Kraftwerken zum Einsatz kommen. Krumm: „Wir haben dann einen definierten Brennstoff mit bestimmten Brenneigenschaften.“

Bis dahin liegt aber noch viel Forschungsarbeit vor Prof. Krumm und seinem Team. Krumm: „Wir müssen erst herausfinden, ob die biogenen Energieträger wirklich nach unseren Vorstellungen eingebunden werden können, wie das optimale Mischverhältnis zwischen Kunststoffflusen und Biomasse aussieht, wie es um die optimale Temperatur im Mischer bestellt ist und um dessen optimale Drehgeschwindigkeit. Kurz: „Eine Vielzahl von Parametern muss stimmen und aufeinander abgestimmt sein, um ein möglichst gutes Ergebnis hinsichtlich der Stabilität und der Verbrennungs- und Vergasungseigenschaften des Brennstoffs zu erzielen.“ Einen ganz besonderen Vorteil besitzt dieser neue Brennstoff aus Sicht der Wissenschaftler: „Wir können Additiva zugeben.“ Will heißen: Durch die Beigabe von Zusatzstoffen wie beispielsweise Kalkstein erhoffen sich die Forscher, die Schadstoffbildung bei der Verbrennung reduzieren zu können.

Ist der Brennstoff erst entwickelt, geht die Forschungsarbeit weiter. Krumm: „Wir müssen herausfinden, welche Brenneigenschaften er hat, und ob sich durch Vergasung qualitativ hochwertiges Produktgas gewinnen lässt, das einerseits als Erdgasersatz Verwendung finden oder aus dem andererseits Wasserstoff abgetrennt werden kann.“ Auch die bereits erwähnte Verminderung von Schadstoffen durch Additiva wird in vorhandenen Festbett-und Wirbelschichtreaktoren, die sich im Technikum auf dem Campus Adolf-Reichwein-Straße befinden, getestet und gegebenenfalls weiter optimiert.

Katja Knoche | idw
Weitere Informationen:
http://www.uni-siegen.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Leuchtende Nanoarchitekturen aus Galliumarsenid
22.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Neuer Sensor zur Messung der Luftströmung in Kühllagern von Obst und Gemüse
22.02.2018 | Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics