Nano macht's besser: PhysikerInnen der Uni Graz testen neue, energiesparende Werkstoffe

Im Bemühen, den Verlust kostbarer Energie beim Transport zu den VerbraucherInnen zu verringern, bieten nanokristalline Werkstoffe viel versprechende Aussichten. An der Karl-Franzens-Universität Graz leitet der Physiker Univ.-Prof. Dr. Heinz Krenn gemeinsam mit seinem Kollegen Ao.Univ.-Prof. Dr. Günther Paltauf ein Projekt, in dem die Eigenschaften nanokristalliner Materialien getestet werden.

„Der Wirkungsgrad leistungsfähiger Transformatoren kann heute Werte von 99,8 Prozent erreichen. Der Energieverlust ist also sehr gering. Trotzdem würden sich hier weitere Verbesserungen auszahlen“, weiß Heinz Krenn. „Wäre es möglich, den Wirkungsgrad mittels neuer Werkstoffe noch um 0,1 Prozent zu steigern, hätte das für Österreich eine jährliche Kosten-Einsparung von rund 3,4 Millionen Euro zur Folge – bei einem angenommenen Verbraucherpreis von sechs Cent pro Kilowattstunde, inklusive Öko-Abgaben“, rechnet der Physiker vor.

Auf der Suche nach Einsparungspotenzial konzentriert sich die Wissenschaft unter anderem auf neue nanokristalline Werkstoffe. „Diese entstehen, wenn die kristalline Struktur eines Materials mit Hilfe spezieller Verfahren bis in den Nanobereich zerkleinert wird“, erklärt Krenn. Stoffe mit nanokristallinen Strukturen weisen veränderte magnetische und mechanische Eigenschaften auf, die eine Reduktion von Ummagnetisierungsverlusten versprechen.

Im Projekt „Zerstörungsfreies Testen nanokristalliner Materialien“ erforscht das Team um Krenn und Paltauf diese Eigenschaften, im Rahmen eines vom Österreichischen Wissenschaftsfonds FWF geförderten Nationalen Forschungsnetzwerkes (NFN), koordiniert von der Uni Wien. Die WissenschafterInnen der Karl-Franzens-Universität arbeiten dabei eng mit KollegInnen des Instituts für Materialphysik der TU Graz unter der Leitung von Univ.-Prof. Dr. Roland Würschum zusammen. An der TU Graz kondensiert man Nano-Partikel in einem Gas bei niedrigem Druck, um daraus ein schwammartiges, nanoporöses Material zu erhalten.

Dieses verhält sich ganz außergewöhnlich. „Ein Kubikzentimeter einer Probe besitzt eine innere Oberfläche von der Größe eines Fußballfeldes. Diese Oberflächen können mit einer elektrolytischen Flüssigkeit elektrisch aktiviert werden. Dadurch lassen sich die magnetischen Eigenschaften steuern“, so Krenn.

Die komplexen Zusammenhänge in diesen hoch verformten Stoffen sind noch kaum untersucht worden – die Grazer WissenschafterInnen betreten also großteils Neuland.

Heinz Krenn beschreibt, wie die magnetischen Eigenschaften getestet werden: „Ein Laserpuls mit zehn Milliardstel Sekunden Dauer ,klopft' an das Material an. Die dabei entstehende Ultraschallwelle wird gemessen. Ausbreitung und Dämpfung tragen Informationen über die internen elastischen Spannungen.“ Untersucht wird weiters, was geschieht, wenn man die Probe magnetisiert, wie das etwa die Eigenschaften der Lichtreflexion beeinflusst.

Nanokristallines Material ist bereits im Einsatz, etwa in Computerplatinen und Konsum-Elektronik, kann jedoch bislang nur in dünnen Folien hergestellt werden kann. „Diese weisen zwar verbesserte magnetische Eigenschaften auf, halten aber mechanischen Verformungen nicht stand“, so Krenn. Die Grazer ForscherInnen sind auf der Suche nach Alternativen, die beide Aspekte optimal vereinen.
Kontakt:
Univ.-Prof. Dr. Heinz Krenn
Institut für Physik der Karl-Franzens-Universität Graz
Tel.: 0316/380-5188, 0664/84 63 135
E-Mail: heinz.krenn@uni-graz.at

Media Contact

Gudrun Pichler idw

Weitere Informationen:

http://www.uni-graz.at

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik

Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.

Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer