Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nächste Generation von High-Speed Satellitenfunk

12.11.2014

Erstmals 15 Gigabit/Sekunde über 15 Kilometer

Wissenschaftlern der Universität Stuttgart ist es gelungen, eine Datenrate von 15 Gigabit pro Sekunde (Gbit/s) mit einer Richtfunkstrecke im so genannten E-Band über eine Distanz von über 15 Kilometer zu übertragen.

Dies entspricht einer Verdreifachung der bisher möglichen Datenrate und Distanz. Die Übertragung war selbst bei Nebel und leichtem Regen möglich. Derartige Richtfunkstrecken können für die nächste Generation der Satellitenkommunikation eingesetzt werden, bei der große Datenmengen vom Satelliten durch die Erdatmosphäre zur Bodenstation gebracht werden müssen. Der gleiche Frequenzbereich ist aber auch für die terrestrische Datenübertragung zugelassen und erfährt aktuell einen weltweiten Aufschwung.

Immer höhere Anforderungen an die zu übertragenden Datenmengen, getrieben durch die unge-bremst fortschreitende Entwicklung beim mobilen Mediennutzungsverhalten, erfordern neue Lösungs-ansätze für die kabellose Kommunikation mit extrem hohen Übertragungsgeschwindigkeiten. Durch die hohen verfügbaren Bandbreiten eignen sich Frequenzen im sogenannten E-Band zwischen 71 und 76 Gigahertz (GHz) sowie zwischen 81 und 86 GHz für terrestrische Anwendungen mit hohen Bitraten besonders gut.

Darüber hinaus lässt die vergleichsweise geringe Dämpfung der elektromag-netischen Wellen durch atmosphärische Einflüsse in diesem Frequenzbereich hohe Übertragungs-distanzen zu. Neben terrestrischen Anwendungen in der Mobilkommunikation oder der Anbindung ländlicher Gegenden an das Breitbandinternet macht der geringe Einfluss der Erdatmosphäre diesen Frequenzbereich auch für die Anbindung von Satelliten interessant. So können auch bei widrigen Witterungsbedingungen hohe Datenmengen etwa von Erdbeobachtungssatelliten zur Erde gefunkt werden.

Im Rahmen eines vom Deutschen Zentrum für Luft- und Raumfahrt geförderten Projektes ist den Forschern nun ein Durchbruch gelungen: Von einem Fernsehturm des Südwestrundfunks aus konnten selbst bei widrigen Witterungsbedingungen Datenraten bis zu 15 Gbit/s über eine Distanz von 15 km übertragen werden.

Gegenüber dem heutigen Stand der Technik entspricht dies einer Steigerung um den Faktor drei, sowohl bei der Übertragungsdistanz als auch bei der Datenrate. Datenrate und Distanz lassen sich dabei grundsätzlich in gewissen Grenzen zueinander verschieben. So konnte mit demselben Funksystem im Labor Datenraten von bis zu 60 Gbit/s nachgewiesen werden.

Möglich wurde dieser Erfolg durch die parallele Umsetzung mehrerer technischer Innovationen: Leistungsstarke Sender und Empfänger im E-Band auf Basis moderner Halbleitertechnologien des Fraunhofer-Instituts für Angewandte Festkörperphysik IAF sorgen für die Frequenzumsetzung und Verstärkung der breitbandigen Signale.

Diese werden über stark gerichtete Parabolantennen, entwickelt vom Projektpartner Radiometer Physics, übertragen und empfangen. Modernste Messtechnik der Firma Keysight erlaubt die Generierung und Analyse der Funksignale mit Informationsbandbreiten bis zu 12 GHz. Derartig leistungsfähige Digitalschaltungen werden bisher vorrangig im Bereich der glasfaser-basierenden Kommunikation eingesetzt. Die Forscher der Universität Stuttgart entwickelten ein Konzept für deren Einsatz in der breitbandigen Funkkommunikation und wendeten dieses nun erstmals im Feldversuch unter realen Bedingungen an.

Die bisherigen kommerziell verfügbaren Funksysteme sind auf Übertragungsdatenraten von wenigen Gigabit pro Sekunde limitiert und erreichen diese auch nur unter optimalen Witterungsbedingungen. Im Bereich der Kommunikationsforschung wurden bis dato maximal Distanzen bis zu fünf Kilometer mit vergleichbaren Datenraten erzielt. Mit aktuellen Ergebnissen eröffnen sich neue Horizonte und technische Freiheitsgrade in der Entwicklung zukünftiger multi-Gigabit Übertragung in terrestrischen und satellitengestützten Richtfunksystemen.

Über das Projekt:
Das diesem Bericht zugrundeliegende Vorhaben wurde mit Mitteln des Bundesministeriums für Wirtschaft und Technologie unter dem Förderkennzeichen 50YB1324 gefördert. Die Verantwortung für den Inhalt dieser Veröffentlichung liegt beim Autor. Ziel ist die nächste Generation von Satelliten-Kommunikationssystemen für die schnelle Anbindung von Satelliten. Eine weitere Anwendung liegt aber auch im terrestrischen Richtfunk. Neben der Universität Stuttgart, dem Fraunhofer-Institut für Angewandte Festkörperphysik IAF und dem Karlsruher Institut für Technologie (KIT) ist der Industriepartner Radiometer Physics beteiligt. Für die Übertragungsexperimente ermöglichte der Südwest-Rundfunk den Zugang zu seinen Sendetürmen.

Weitere Informationen:
Prof. Ingmar Kallfass, Universität Stuttgart, Institut für Robuste Leistungshalbleitersysteme (ILH),
Tel.: 0711/ 685-68747, E-Mail: ingmar.kallfass@ilh.uni-stuttgart.de
Andrea Mayer-Grenu, Universität Stuttgart, Abt. Hochschulkommunikation, Tel. 0711/685-82176,
E-Mail: andrea.mayer-grenu (at) hkom.uni-stuttgart.de

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-stuttgart.de/

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht TU Ilmenau erforscht innovative mikrooptische Bauelemente für neuartige Anwendungen
21.09.2017 | Technische Universität Ilmenau

nachricht Bald bessere Akkus?
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungsnachrichten

Veränderungen in der Geschäftsführung von Phoenix Contact

22.09.2017 | Unternehmensmeldung

Tanzende Elektronen verlieren das Rennen

22.09.2017 | Physik Astronomie