Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekül-Turnen mit großem Anwendungspotenzial

20.02.2013
Für die Lösung der Energieprobleme der Zukunft spielen Brennstoffzellen eine wichtige Rolle, weil sie chemische Energie effizient und umweltfreundlich in elektrischen Strom umwandeln.

Einen wichtigen Beitrag zum verbesserten Verständnis dieser Energiewandler haben nun Chemiker der Universität Bonn geleistet: Ihnen ist es erstmals gelungen, den „Flip-Flop“ einer Wasserstoffbrücke zeitlich hoch aufgelöst aufzuzeichnen. Diese Moleküldrehung ist für den Transport der Wasserstoff-Ionen in der Brennstoffzelle entscheidend. Die Ergebnisse sind nun in der renommierten Fachzeitschrift „Angewandte Chemie“ veröffentlicht.


Molekulares Kino: Mit Hilfe der Lasersprektroskopie machen Prof. Dr. Peter Vöhringer, Annika Dahmen und Martin Olschewski vom Institut für Physikalische und Theoretische Chemie der Universität Bonn die Bewegung der Wasserstoffbrücken im Billionstel Sekundenbereich sichtbar.
(c) Foto: Volker Lannert/Uni Bonn

Glitzernder Schnee und zugefrorene Teiche: Winterlandschaften sind ästhetisch und laden zum Schlittschuhlaufen, Schlitten- oder Skifahren ein. Ohne die einmaligen Eigenschaften von Wasser wäre das nicht möglich. Die Flüssigkeit verwandelt sich bei Minusgraden in wohl geordnete Eiskristalle, die als sechsarmige Schneeflocken vom Himmel rieseln oder als Eis Gewässer bedecken. „Durch die Kristallstruktur braucht gefrorenes Wasser mehr Platz als flüssiges, deshalb schwimmt Eis an der Oberfläche“, sagt Prof. Dr. Peter Vöhringer vom Institut für Physikalische und Theoretische Chemie der Universität Bonn.

Sauerstoff und Wasserstoff bilden eine Brücke

Ein Wassermolekül besteht aus zwei Wasserstoff- und einem Sauerstoffatom. Seine drei Atome liegen nicht auf einer geraden Linie, sondern knicken wie ein Bumerang ab. Die elektrischen Ladungen sind asymmetrisch verteilt: positiv am Wasserstoff- und negativ am Sauerstoffatom. Die entgegengesetzten Ladungen der benachbarten Wassermoleküle ziehen sich deshalb wie Magnete an – der Sauerstoff und der Wasserstoff bilden eine Brücke. „In flüssigem Wasser entstehen diese instabilen Wasserstoffbrücken für unvorstellbar kurze Bruchteile einer Sekunde“, sagt Prof. Vöhringer. Dagegen fügen sich die Wassermoleküle im Eis durch die Brücken zu regelmäßigen sechseckigen Strukturen zusammen, die dauerhaft sind – solange das Eis nicht schmilzt.

Die Drehung erfolgt in Form eines Flip-Flops

Es gelingt aber nicht immer, dass sich sämtliche Wassermoleküle im Eis zu perfekten Sechserringen ausbilden: Manchmal ragen statt eines Sauerstoff- und eines Wasserstoffatoms auch zwei Wasserstoffatome oder zwei Sauerstoffatome aneinander – dann liegt ein „Bjerrum’scher Defekt“ vor.

Die gleich geladenen Atome stoßen sich dabei ab und vollziehen in einem „Flip-Flop“ eine Drehung, bis sich die Richtung der H-Brücke genau um 180 Grad geändert hat. „Experimentell konnte zuvor diese Flip-Flop-Bewegung noch nicht zeitlich aufgelöst beobachtet werden“, erläutert der Physikochemiker der Universität Bonn. Dem Team von Prof. Vöhringer gelang nun mit Hilfe der Laserspektroskopie, wie in einem molekularen Kino die Bewegung der Wasserstoffbrücken im Billionstel Sekundenbereich aufzuzeichnen. Die Wissenschaftler führten die Beobachtungen an dem einfachen Modellmolekül Pinakol durch, einer organischen Verbindung, aus der wie beim Wasser ebenfalls Gruppen mit Sauerstoff- und Wasserstoffatomen herausragen.

Grundlage für die Entwicklung effektiverer Brennstoffzellen

Was zunächst wie eine reine Turnübung von Molekülen wirkt, hat großes Anwendungspotenzial: etwa für die umweltfreundliche Verbrennung von explosivem Wasserstoff zu harmlosem Wasser in Brennstoffzellen. Die Effektivität dieser technischen Anwendung hängt entscheidend davon ab, wie gut die Wasserstoff-Ionen im Innern der Brennstoffzelle transportiert werden können. „Unsere Erkenntnisse zu den Wasserstoffbrücken-Flip-Flops zeigen einen Weg, wie dies besser und schneller geschehen kann“, blickt Prof. Vöhringer in die Zukunft.

8,3 Millionen Euro für die Verlängerung des Sonderforschungsbereichs

Die Grundlage solcher Reaktionen werden an der Universität Bonn im Sonderforschungsbereich „Chemie an Spinzentren: Konzepte, Mechanismen, Funktionen“ (SFB 813) untersucht. Für die Verbrennung von Wasserstoff ist Sauerstoff erforderlich, der zwei freie Elektronen als sehr reaktionsfreudige Einzelgänger hat. Diese Reaktivität und die außergewöhnlichen Eigenschaften von Materie mit ungepaarten Elektronen wollen die Wissenschaftler im Detail verstehen und mit modernsten Computerverfahren vorhersagen. Der interdisziplinäre Zusammenschluss von Forschern der drei chemischen Institute, des Pharmazeutischen Instituts und des LIMES-Instituts der Universität Bonn wird nun von der Deutschen Forschungsgemeinschaft mit 8,3 Millionen Euro für weitere vier Jahre gefördert. „Wir freuen uns sehr über diese Verlängerung, weil wir dadurch an der Front der Forschung zu weiteren grundlegenden Erkenntnissen kommen können“, sagt Prof. Vöhringer, Koordinator des SFB 813. Diese Erkenntnisse können in Zukunft bei der Versorgung mit nachhaltiger Energie eine Schlüsselrolle spielen.

Publikation: Flip-Flop einer Wasserstoffbrücke durch einen Bjerrum´schen Defekt, Angewandte Chemie, DOI: 10.1002/anie.201208625

Kontakt:

Prof. Dr. Peter Vöhringer
Institut für Physikalische und Theoretische Chemie
Sprecher des SFB 813 „Chemie an Spinzentren“
Tel. 0228/737050
E-Mail: p.voehringer@uni-bonn.de
Weitere Informationen:
http://dx.doi.org/10.1002/anie.201208625
Publikation im Internet
http://www3.uni-bonn.de/forschung/forschungsprofil/sonderforschungsbereiche/sfb-813

Informationen zum Sonderforschungsbereich 813

http://www.uni-bonn.tv/podcasts/SF813.mp4/view
Podcast

Johannes Seiler | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Neue Sensortechnik für E-Auto-Batterien
08.12.2016 | Ruhr-Universität Bochum

nachricht Siliziumsolarzelle des ISFH erzielt 25% Wirkungsgrad mit passivierenden POLO Kontakten
08.12.2016 | Institut für Solarenergieforschung GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie