Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekül aus der Natur macht Akku-Elektrode hochleistungsfähig

11.07.2017

Chlorophyll, Blut und Vitamin B12 bauen alle auf dem Molekül Porphyrin auf. Und auch Ladegeschwindigkeit von Batterien lässt sich deutlich steigern, wenn man Porphyrin in den Elektroden nutzt. In der Zeitschrift Angewandte Chemie International Edition stellen nun Forscher des KIT das neue Materialsystem vor, das Basis sein könnte für leistungsstarke Batterien und Superkondensatoren.

Die Lithium-Ionen-Batterie ist die derzeit am weitesten verbreitete Batterietechnologie. Kein anderer wieder aufladbarer elektrischer Energiespeicher besitzt vergleichbar gute Eigenschaften in der Anwendung. Dies macht sie für Geräte wie Laptops, Handys oder Kameras derzeit unersetzlich, auch wenn verbesserte Eigenschaften wie Schnellladefähigkeit wünschenswert sind.


Das Molekül Porphyrin – Eingebaut in Elektroden – steigert im Laborexperiment die Ladegeschwindigkeit von Batterien.

Quelle: KIT/HIU

Viele Materialien, die im Labor die Eigenschaften von Lithium-Ionen-Batterien verbessern, sind jedoch nicht nachhaltig, weil diese selten, teuer, giftig oder umweltschädlich sind. Hochleistungsfähige Speichermaterialien, welche auf nachwachsenden Rohstoffen basieren, wären das angestrebte Ideal.

Eine interdisziplinäre Forschungsgruppe um Professor Maximilian Fichtner vom Helmholtz-Institut Ulm, einer Einrichtung unter Trägerschaft des KIT, und Professor Mario Ruben vom Institut für Nanotechnologie des KIT hat nun ein neues Speichermaterial vorgestellt, welches die sehr schnelle und reversible Einlagerung von Lithium Ionen erlaubt.

Dazu wurde das organische Molekül Kupferporphyrin mit funktionellen Gruppen versehen, welche beim ersten Beladungsvorgang in der Batteriezelle eine strukturelle und elektrisch leitende Vernetzung des Materials herbeiführen. Dadurch wird die Struktur der Elektrode im Labor in hohem Maße stabilisiert und mehrere tausende Lade- und Entladezyklen wurden möglich.

Mit diesem Material wurden im Labor Speicherkapazitäten von 130-170 Milli-Amperestunden pro Gramm (mAh/g) gemessen – bei einer mittleren Spannung von 3 Volt – und Be- und Entladungsdauern von nur einer Minute. Aktuell betriebene Experimente deuten darauf hin, dass sich die Speicherkapazität um weitere 100 mAh/g steigern lässt und der Speicher neben Lithium auch auf mit dem wesentlich häufigeren Element Natrium betrieben werden kann.

„Porphyrine kommen in der Natur sehr häufig vor und bilden das Grundgerüst des Blattgrüns (Chlorophyll), des Blutfarbstoffs von Menschen und Tieren (Hämoglobin), oder von Vitamin B12“, erklärt Fichtner. Man setzt technische Varianten solcher Materialien bereits ein etwa in der blauen Farbe von Laserdruckern oder von Autolacken. Durch die Bindung funktioneller Gruppen an das Porphyrin ist es gelungen, seine speziellen Eigenschaften erstmals auch für den Einsatz in elektrochemischen Speichern zu nutzen. „Die Speichereigenschaften sind außergewöhnlich, weil das Material eine Speicherkapazität wie ein Batteriematerial besitzt – aber so schnell arbeitet wie ein Superkondensator“, so Fichtner.

P. Gao, Z. Chen, Zh. Zhao-Karger, J.E. Mueller, Ch. Jung, S. Klyatskaya, O. Fuhr, M. Ruben, M. Fichtner, Porphyrin complex as self-conditioned electrode material for high performance energy storage, Angew. Chemie Int. Ed. (2017) doi:10.1002/ange.201702805

Über das Helmholtz-Institut Ulm (HIU) des KIT

Das HIU wurde im Januar 2011 vom KIT als Mitglied der Helmholtz-Gemeinschaft in Kooperation mit der Universität Ulm gegründet. Mit dem Deutschen Zentrum für Luft- und Raumfahrt (DLR) sowie dem Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg (ZSW) sind zwei weitere renommierte Einrichtungen als assoziierte Partner in das HIU eingebunden. Das internationale Team aus rund 110 Wissenschaftlerinnen und Wissenschaftlern forscht im HIU an der Weiterentwicklung der Grundlagen von zukunftsfähigen Energiespeichern für den stationären und mobilen Einsatz.

Weitere Informationen zum HIU finden Sie unter:
http://www.hiu-batteries.de

Mehr Informationen zum KIT-Zentrum Energie: http://www.energie.kit.edu

Weiterer Kontakt:
Kosta Schinarakis, Themenscout, Tel.: +49 721 608 41956, Fax: +49 721 608 43658, E-Mail: schinarakis@kit.edu

Das Karlsruher Institut für Technologie (KIT) verbindet seine drei Kernaufgaben Forschung, Lehre und Innovation zu einer Mission. Mit rund 9 300 Mitarbeiterinnen und Mitarbeitern sowie 25 000 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.

Diese Presseinformation ist im Internet abrufbar unter: http://www.kit.edu

Weitere Informationen:

http://www.hiu-batteries.de
http://www.energie.kit.edu
http://schinarakis@kit.edu
http://www.kit.edu

Monika Landgraf | Karlsruher Institut für Technologie

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Innovatives Messmodul zur Bestimmung der Inaktivierungsleistung von UV-Hygienisierungsanlagen
22.01.2018 | Institut für Bioprozess- und Analysenmesstechnik e.V.

nachricht TU Wien entwickelt neue Halbleiter-Bearbeitungstechnik
22.01.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungen

Transferkonferenz Digitalisierung und Innovation

22.01.2018 | Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungsnachrichten

Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft

22.01.2018 | Biowissenschaften Chemie

Ein Haus mit zwei Gesichtern

22.01.2018 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics