Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher der TU Wien bauen Spektral-Kamera

21.12.2011
Eine handelsübliche Digitalkamera bauten Forscher zu einer Spezial-Kamera um, mit der man das Farbspektrum von Objekten genau untersuchen kann.

Rot, blau und grün – nur drei Farben kann man mit einer gewöhnlichen Digitalkamera aufnehmen. Für unser Auge genügt das um einen natürlichen Farbeindruck zu erhalten. In Wirklichkeit setzt sich das Licht, das wir wahrnehmen, aus unendlich vielen Primärfarben unterschiedlicher Wellenlänge zusammen. Um diese Farb-Kombinationen untersuchen zu können, brauchte man bisher komplizierte, teure Spezialapparate. An der TU Wien wurde nun mit ganz einfachen Mitteln ein Gerät entwickelt, das aus einer handelsüblichen Digicam eine Spektral-Kamera macht.


Die Spektralkamera
TU Wien


Strahlengang im Inneren
TU Wien

Optisches Gitter spaltet Lichtstrahlen auf

Das Licht, das vom fotografierten Objekt kommt, wird durch eine Linse auf ein optisches Gitter abgebildet. „Das optische Gitter ist in unserem Fall eine Spezialfolie aus Plastik – die gibt es fertig zu kaufen und sie ist leicht zu bearbeiten“, erklärt Ralf Habel vom Institut für Computergraphik und Algorithmen der TU Wien. Diese Folie lenkt die Lichtstrahlen ab, bevor sie in die Kamera gelangen – und zwar je nach Wellenlänge unterschiedlich stark. Dadurch landet das Licht unterschiedlicher Farben an unterschiedlichen Positionen des Kamerasensors. Aus den Sensormessdaten lässt sich dann – auf mathematisch etwas aufwändige Weise – die farbliche Zusammensetzung des fotografierten Objektes berechnen.

Auf die richtige Belichtung kommt es an

Durch die Lichtbrechung am optischen Gitter entstehen am Sensor große Helligkeitsunterschiede. Sowohl ganz dunkle als auch ganz helle Bildbereiche müssen richtig dargestellt werden, damit sich das Farbspektrum richtig zurückrechnen lässt. Deshalb griff man auf die HDR-Technik zurück, die auch in der Standard-Fotografie mittlerweile gerne verwendet wird: Mehrere Fotos vom selben Objekt werden hintereinander mit unterschiedlicher Belichtungszeit aufgenommen. Auf jedem Foto ist jeweils ein bestimmter Bildbereich richtig belichtet. Der Computer setzt daraus ein einziges Bild zusammen, das die gesamte Helligkeitsinformation enthält – mit viel mehr Zwischenschritten zwischen hell und dunkel als das bei einem gewöhnlichen Foto möglich wäre.

„Andere Spektral-Kameras verwenden mechanische Bauteile wie rotierende Spiegel. Das macht diese Geräte teuer und kompliziert“, meint Ralf Habel. Durch die an der TU Wien entwickelte Lösung wurde nun bewiesen, dass es auch einfacher geht – das nötige Computer Know-How vorausgesetzt. „Spektrale Analysen, wie sie durch diese Methode möglich sind, spielen heute in vielen Technologie-Bereichen eine Rolle“, sagt Habel, „etwa um Mineralien zu analysieren, Pflanzen auf ihre Gesundheit zu untersuchen, oder auch bei Satellitenbildern.“

Konkurrenzfähige Auflösung mit Plastikrohr und Klebeband

Die Spektral-Kamera kann auf zwei verschiedene Arten verwendet werden: Entweder wird nur ein enger Schlitz mit einem Pixel Breite analysiert – dann lässt sich für jeden Punkt des Schlitzes ein Farbspektrum mit einer Wellenlängen-Auflösung von 0.8 Nanometern berechnen, oder man nimmt ein volles zweidimensionales Bild (120x120 Pixel) auf und erreicht für jeden Punkt eine spektrale Auflösung von immer noch 5 Nanometern. Damit kann das Gerät jedenfalls mit komplizierteren, teureren Spektral-Analysatoren mithalten. Die verwendete Kamera ist eine Canon EOS 5D, als Linsen wurden handelsübliche Kameraobjektive verwendet. Ein gewöhnliches schwarz ausgekleidetes PVC-Rohr bildet das Gehäuse.

Rückfragehinweis:
Dr. Ralf Habel
Institut für Computergraphik und Algorithmen
Technische Universität Wien
Favoritenstraße 9-11, 1040 Wien
+43-1-58801-18672
ralf.habel@tuwien.ac.at
TU Wien - Mitglied der TU Austria
www.tuaustria.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.tuwien.ac.at

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Neue Sensortechnik für E-Auto-Batterien
08.12.2016 | Ruhr-Universität Bochum

nachricht Siliziumsolarzelle des ISFH erzielt 25% Wirkungsgrad mit passivierenden POLO Kontakten
08.12.2016 | Institut für Solarenergieforschung GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie