Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Energietechnik-Prozesse genauer simulieren

18.09.2012
Computersimulationen gehören zum Alltag in den Ingenieurwissenschaften. Um Prozesse realitätsgetreu am PC nachzubilden, braucht es komplexe mathematische Modelle.
Das Team um RUB-Ingenieur Dr. Harald Kruggel-Emden vom Lehrstuhl für Energieanlagen und Energieprozesstechnik erhält für die kommenden fünf Jahre rund 1,59 Millionen Euro Fördermittel der Deutschen Forschungsgemeinschaft zum Aufbau einer Emmy Noether-Nachwuchsgruppe.

Ziel der Forscher ist es, die Modelle hinter der sogenannten Diskreten Elemente-Methode zu verbessern. „Mit dieser Methode kann man zum Beispiel Prozesse zur Nutzung regenerativer Energien simulieren und optimieren“, erklärt Dr. Kruggel-Emden. „Das ermöglicht letztendlich bessere Produktqualität bei weniger Kosten und geringerem Energieeinsatz.“

Partikel mit beliebigen Formen simulieren

Mit der Diskreten Elemente-Methode beschreiben Wissenschaftler das Verhalten von Partikelsystemen wie Holzpellets oder Kohle. Oft kombinieren sie die Methode mit „Computational Fluid Dynamics“, einem Verfahren zur Simulation von Gasströmen. Die Kombination ist besonders hilfreich, um sogenannte fluidisierte Partikelsysteme zu beschreiben, also Systeme, in denen sich Partikel frei in Gasen bewegen. Herkömmliche Modelle idealisieren die Form der Partikel, indem sie annehmen, dass sie kugelig sind. In Wirklichkeit können die Teilchen jedoch viele Formen haben. Die RUB-Forscher möchten das Modell nun so erweitern, dass sie Partikel mit beliebiger Gestalt simulieren können.

Der Knackpunkt: Fluidmechanische Kräfte und Wärmeübertragung

Schon jetzt können mechanische Interaktionen wie Kollisionen der Partikel auch für nicht kugelige Teilchen beschrieben werden. Aber die Simulation fluidmechanischer Kräfte ist bislang nur für kugelige Teilchen möglich. Eine fluidmechanische Kraft wäre zum Beispiel die Widerstandskraft.

Simulation von durchströmten Systemen: RUB-Ingenieure simulieren durchströmte Systeme mit unterschiedlicher Detailtiefe. Die Farben in dem wenig detaillierten System (links) repräsentieren die Partikelbeladung je Gasvolumen (rot: viele Partikel/Volumen; blau: wenig Partikel/Volumen). In detaillierteren Simulationen (rechts) beziehen die Forscher mit ein, wie das Gas die Partikel umströmt (Pfeile unten rechts).

Copyright: Harald Kruggel-Emden

„Wenn man mit dem Auto fährt, dann erzeugt die Luft einen Widerstand“, sagt Dr. Kruggel-Emden. „Aber auch ein stehendes Auto würde durch den Wind eine Widerstandskraft erfahren.“ Die meisten technischen Systeme sind durchströmt, so dass Widerstandskräfte berücksichtigt werden müssen – genau das sollen die neuen Modelle können. Zusätzlich wollen die RUB-Wissenschaftler die Wärmeübertragung in Systemen mit komplex geformten Partikeln abbilden.

Das würde in Zukunft eine bessere Beschreibung von Prozessen der Energietechnik erlauben. Das Projekt trägt den Titel „Mischung/Segregation und Wärmeübertragung in fluidisierten Systemen der Energietechnik: Ein Beitrag zur Weiterentwicklung der gekoppelten CFD-Diskreten Elemente Methode für polydisperse Systeme komplexer Partikelgeometrie“.

Weitere Informationen

Dr. Harald Kruggel-Emden, Lehrstuhl für Energieanlagen und Energieprozesstechnik, Fakultät für Maschinenbau der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-27362
kruggel-emden@leat.ruhr-uni-bochum.de

Redaktion: Dr. Julia Weiler

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Solarenergie: Defekte in Kesterit-Halbleitern mit Neutronen untersucht
07.12.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Plug&Play-Lichtlösung für die NOx-Messung
07.12.2017 | Heraeus Noblelight GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Papstar entscheidet sich für tisoware

08.12.2017 | Unternehmensmeldung

Natürliches Radongas – zweithäufigste Ursache für Lungenkrebs

08.12.2017 | Unternehmensmeldung

„Spionieren“ der versteckten Geometrie komplexer Netzwerke mit Hilfe von Maschinenintelligenz

08.12.2017 | Biowissenschaften Chemie