Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Energie im Container - LZE baut Langzeitspeicher mit Wasserstofftechnologie

09.08.2017

Energie im Container - Leistungszentrum Elektroniksysteme baut Langzeitspeicher mit Wasserstofftechnologie

Ein weltweit einmaliges System zur kompakten Speicherung großer Mengen an Energie wird am Fraunhofer IISB in Erlangen aufgebaut und in ein modernes Gleichstromnetz integriert. Im Rahmen des Leistungszentrums Elektroniksysteme LZE wird damit erforscht, wie ein solcher Energiespeicher zur sicheren und sauberen Energieversorgung von Industriebetrieben und größeren Gebäudekomplexen beitragen kann.


Der Container umfasst zwei getrennte Abteile, eines für die effiziente Anbindung ans elektrische Netz und die Steuerungstechnik (vorne), das andere für den verfahrenstechnischen Aufbau.

Kurt Fuchs / Fraunhofer IISB

Etwas eng geht es schon zu, wenn man den weißen Stahlcontainer am Fraunhofer-Institut für Integrierte Systeme und Bauelementetechnologie IISB in Erlangen betritt. Der Innenraum ist vollgepackt mit Technologie, welche die Ein- und Ausspeicherung elektrischer Energie auf Basis eines flüssigen Wasserstoffträgers ermöglicht.

„Ziel war es, alle Anlagenkomponenten in einem 20-Fuß-Container unterzubringen“, so IISB-Wissenschaftler Johannes Geiling, der für den verfahrenstechnischen Aufbau der Forschungsanlage zum Wandeln und Speichern elektrischer Energie verantwortlich ist. Das im Rahmen des Leistungszentrums Elektroniksysteme LZE errichtete neuartige System soll Maßstäbe für die langfristige Speicherung großer Mengen an Energie setzen – und das alles auf extrem wenig Raum.

Das Speichersystem wird im Rahmen des LZE-Pilotprojekts „DC-Backbone mit Strom-Gas-Kopplung“ aufgebaut. Dem Prinzip des Leistungszentrums entsprechend wird der “Container voller Energie” in enger Zusammenarbeit der Fraunhofer-Institute IISB und IIS mit der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) und regionalen Industriepartnern errichtet. Das Grundkonzept besteht darin, aus überschüssiger elektrischer Energie, etwa von einer lokalen Photovoltaik-Anlage, Wasserstoff zu erzeugen und diesen in einem organischen Trägerstoff sicher und kompakt – auch über längere Zeiträume – zu speichern.

Für die spätere Nutzung kann der Wasserstoff wieder aus dem Trägerstoff freigesetzt und mit einer Brennstoffzelle in elektrische Energie umgewandelt werden. Die Brennstoffzelle wurde bereits im April als erster Hauptbestandteil des Energiespeichersystems in Betrieb genommen. Mit den eingebauten Komponenten können 25 Kilowatt an elektrischer Leistung ausgespeichert werden.

Das eingesetzte Brennstoff­zellen­system beruht auf der sogenannten Niedertemperatur-PEM-Technologie (PEM: Proton Exchange Membrane). Die PEM-Bauweise ermöglicht es grundsätzlich, die Brennstoffzelle innerhalb weniger Minuten aus dem ausgeschalteten Zustand heraus in den Betriebszustand zu versetzen. Schnelle Betriebsbereitschaft ist z.B. für die spätere Abdeckung von Lastspitzen in Industriebetrieben wichtig.

Der zur Wasserstoffspeicherung verwendete flüssige Trägerstoff ist in der Fachsprache als LOHC (Liquid Organic Hydrogen Carrier) bekannt. Die Erlanger Forscher sehen in der eingesetzten LOHC-Technologie, ein Spezialgebiet des Lehrstuhls für Chemische Reaktionstechnik (CRT) an der FAU, großes Potenzial. Der flüssige Trägerstoff nimmt über eine chemische Reaktion große Mengen an elektrolytisch erzeugtem Wasserstoff auf und kann dann unter üblichen Umgebungs­bedingungen für Druck und Temperatur sicher gelagert werden.

Nur unter ganz bestimmten Bedingungen innerhalb eines chemischen Reaktors kann der Wasserstoff wieder vom Trägerstoff gelöst werden. Was die Anforderungen an Lagerung und Transport anbetrifft, lässt sich der Trägerstoff mit herkömmlichem Diesel vergleichen – ein großer Vorteil gegenüber anderen Wasserstoff­speicher­technologien, die meist hohe Drücke oder sehr tiefe Temperaturen benötigen. Der Trägerstoff ist in der Industrie übrigens schon weitläufig im Einsatz – dort allerdings als Thermoöl für die Beheizung und Kühlung von Prozessen.

In der Anwendung als LOHC hingegen ermöglicht er die wiederholte Einspeicherung und Freisetzung von Energie in einem geschlossenen Kreislaufprozess. Im Gegensatz zu fossilen Kraftstoffen wird das LOHC im Prozess nicht verbraucht, sondern kann immer wieder mit Wasserstoff be- und entladen werden. Im Container in Erlangen können derzeit etwa 300 Liter LOHC gelagert werden, was einer im Wasserstoff gespeicherten Energie von fast 600 Kilowattstunden entspricht.

Das reicht aus, um den Strombedarf eines kleineren Industriebetriebs über mehrere Stunden zu decken. Über zusätzliche Tankbehälter lässt sich die gespeicherte Energiemenge jedoch leicht um ein Vielfaches erhöhen. Somit können beispielsweise auch größere Betriebe, Rechenzentren oder Krankenhäuser über längere Zeiträume versorgt werden.

Mit der neuen Forschungsanlage wollen die Wissenschaftler in Erlangen verschiedenen Fragen auf den Grund gehen: Wie können mit einem LOHC-basierten Energiespeichersystem schwankende Energieerzeugungsverläufe aufgenommen werden, wie sie z. B. bei den vor Ort installierten Photovoltaikanlagen vorkommen? Wie lassen sich derartige Systeme kompakt in einen einzelnen Container integrieren? Und wie lässt sich eine solche Anlage effizient in industrielle Energienetze einbinden? Am Fraunhofer IISB ist die Anlage an das lokale Gleichstromnetz angebunden.

Das Institut verfügt über langjährige Expertise auf dem Gebiet der Gleichstromtechnik. Lokale Gleichstromnetze ermöglichen durch die Vermeidung unnötiger Wandlungsverluste von Gleichstrom in Wechselstrom im Zusammenspiel lokaler Erzeuger, Speicher und Verbraucher einen effizienteren Betrieb des Gesamtsystems.

Auf Grund der extremen Kompaktheit des Containersystems war eine Vielzahl von maßgeschneiderten Lösungen notwendig, die die beteiligten Mitarbeiter – Ingenieure wie Techniker – das ein oder andere Mal ins Grübeln brachten. „Aber bisher haben wir alles untergebracht“, sagt dazu der stellvertretende Projektleiter im LZE-Pilotprojekt „DC-Backbone mit Strom-Gas-Kopplung”, Michael Steinberger, mit einem Schmunzeln. „Und nur durch disziplinübergreifende Zusammenarbeit lässt sich unser Forschungsprojekt erfolgreich stemmen“, führt Steinberger weiter aus.

Der studierte Elektrotechniker hat sich in den letzten Jahren zum Brennstoffzellenspezialisten weiterentwickelt und ist auch für die Steuerungstechnik im Container verantwortlich. Für die Konzeption der Steuerungstechnik konnte Steinberger auf wertvolle Unterstützung der Kommunikationsexperten des Fraunhofer-Instituts für Integrierte Schaltungen IIS zurückgreifen. Doch auch tiefgreifende Kenntnisse chemischer Prozesse sind notwendig: So ist beispielsweise der LOHC-Reaktor eine Entwicklung des CRT, mit dem eine enge Kooperation im Rahmen des Leistungszentrums Elektroniksysteme besteht.

Die Forschungsarbeiten am weltweit einmaligen Energiespeicher bringen wichtige Erkenntnisse, wie Speichersysteme auf Basis flüssiger Wasserstoffträger in lokale Energiesysteme integriert werden können. „Mit der Inbetriebnahme des Brennstoffzellensystems ist ein erster wichtiger Schritt getan. Nun sind wir gespannt auf die nächsten Ergebnisse“, meint Projektmitarbeiter Johannes Geiling. „Ein wichtiger Forschungsschwerpunkt wird es sein, die am besten geeignete Betriebsweise für das Speichersystem zu finden”, so Geiling weiter. Denn mit der richtigen Betriebsstrategie wird es das LOHC-System ermöglichen, erneuerbare Energien unter Gewährleistung der Versorgungssicherheit auch in Industriebetrieben, mittelständischen Unternehmen oder größeren Gebäudekomplexen und Quartieren stärker einzubinden und damit den energetischen Eigenversorgungsgrad zu erhöhen.

Über das Leistungszentrum Elektroniksysteme (LZE)

Das Leistungszentrum Elektroniksysteme ist eine gemeinsame Initiative der Fraunhofer-Gesellschaft, ihrer Institute IIS und IISB und der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), zusammen mit weiteren außeruniversitären Forschungseinrichtungen sowie assoziierten Partnern aus der Industrie. Das Leistungszentrum fußt auf der langjährigen intensiven Zusammenarbeit zwischen den Fraunhofer-Instituten und der FAU sowie der einzigartigen Konzentration von Forschung und Industrie im Bereich der Elektroniksysteme am Standort Nürnberg-Erlangen-Fürth.

Exzellente Forschung und gemeinsame Planung schaffen dabei die Basis für eine umfassende, langfristig angelegte strategische Partnerschaft von Fraunhofer, FAU und Industrie. Die Pilotphase des Leistungszentrums Elektroniksysteme wurde im Januar 2015 gestartet und wird vom Bayerischen Staatsministerium für Wirtschaft und Medien, Energie und Technologie gefördert.

Das Bildmaterial zur redaktionellen Verwendung finden Sie unter https://www.iisb.fraunhofer.de/presse.

Weitere Informationen sowie die Pilotprojekte des LZE e.V. finden Sie unter http://www.lze.bayern.

Kontakt

Johannes Geiling
Fraunhofer IISB, Schottkystr. 10, 91058 Erlangen

Tel. +49 9131 761 - 488
johannes.geiling@iisb.fraunhofer.de

Weitere Informationen:

http://www.iisb.fraunhofer.de Homepage Fraunhofer IISB
http://www.lze.bayern Homepage LZE

Fraunhofer IISB Kommunikation | Fraunhofer-Gesellschaft

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Schnell, günstig, tragbar: Testgerät PIDcheck prüft Solarmodule im Feld auf PID
18.06.2018 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

nachricht Faszination Weltall - Erlanger Forscher züchten Kristalle in der Schwerelosigkeit
15.06.2018 | Fraunhofer IISB

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 in Shanghai

Die AchemAsia geht in ihr viertes Jahrzehnt und bricht auf zu neuen Ufern: Das International Expo and Innovation Forum for Sustainable Chemical Production findet vom 21. bis 23. Mai 2019 in Shanghai, China statt. Gleichzeitig erhält die Veranstaltung ein aktuelles Profil: Die elfte Ausgabe fokussiert auf Themen, die für Chinas Prozessindustrie besonders relevant sind, und legt den Schwerpunkt auf Nachhaltigkeit und Innovation.

1989 wurde die AchemAsia als Spin-Off der ACHEMA ins Leben gerufen, um die Bedürfnisse der sich damals noch entwickelnden Iindustrie in China zu erfüllen. Seit...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: Li-Fi erstmals für das industrielle Internet der Dinge getestet

Mit einer Abschlusspräsentation im BMW Werk München wurde das BMBF-geförderte Projekt OWICELLS erfolgreich abgeschlossen. Dabei wurde eine Li-Fi Kommunikation zu einem mobilen Roboter in einer 5x5m² Fertigungszelle demonstriert, der produktionsübliche Vorgänge durchführt (Teile schweißen, umlegen und prüfen). Die robuste, optische Drahtlosübertragung beruht auf räumlicher Diversität, d.h. Daten werden von mehreren LEDs und mehreren Photodioden gleichzeitig gesendet und empfangen. Das System kann Daten mit mehr als 100 Mbit/s und fünf Millisekunden Latenz übertragen.

Moderne Produktionstechniken in der Automobilindustrie müssen flexibler werden, um sich an individuelle Kundenwünsche anpassen zu können. Forscher untersuchen...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: ALMA entdeckt Trio von Baby-Planeten rund um neugeborenen Stern

Neuartige Technik, um die jüngsten Planeten in unserer Galaxis zu finden

Zwei unabhängige Astronomenteams haben mit ALMA überzeugende Belege dafür gefunden, dass sich drei junge Planeten im Orbit um den Säuglingsstern HD 163296...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Simulierter Eingriff am virtuellen Herzen

18.06.2018 | Veranstaltungen

Künstliche Intelligenz – Schafft der Mensch seine Arbeit ab?

15.06.2018 | Veranstaltungen

Internationale Konferenz zur Asteroidenforschung in Garching

13.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Abwehrmechanismus gegen Sauerstoffradikale entdeckt

18.06.2018 | Biowissenschaften Chemie

Umwandlung von nicht-neuronalen Zellen in Nervenzellen

18.06.2018 | Biowissenschaften Chemie

Im Fußballfieber: Rittal Cup verspricht Spannung und Spaß

18.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics