Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Durchbruch bei Dünnfilm-Solarzellen: Neue Erkenntnisse zum Indium-Gallium-Rätsel

13.07.2010
Forschungskooperation erwartet deutliche Verbesserung des
Wirkungsgrads bei CIGS-Dünnfilm-Solarzellen

Wissenschaftlern der Johannes Gutenberg-Universität Mainz (JGU) ist ein wichtiger Durchbruch bei der Suche nach effizienteren Dünnfilm-Solarzellen gelungen. Computersimulation zum sogenannten Indium-Gallium-Rätsel weisen einen neuen Weg zur Effizienzsteigerung von CIGS-Dünnfilm-Solarzellen.

Bisher liegt der Wirkungsgrad der CIGS-Zellen bei etwa 20 Prozent, während im Prinzip Wirkungsgrade von über 30 Prozent möglich sind. Die Arbeiten der Mainzer Wissenschaftler, die im Rahmen des mit Bundesmitteln geförderten comCIGS-Projekts erfolgen, wurden in der jüngsten Ausgabe der renommierten Fachzeitschrift Physical Review Letters veröffentlicht.

Dünnfilm-Solarzellen haben einen stetig wachsenden Anteil am Solarzellen-Markt. Da sie nur wenige Mikrometer dick sind, sparen sie Material- und Herstellungskosten. Den höchsten Wirkungsgrad von derzeit etwa 20 Prozent erzielen CIGS-Dünnfilm-Solarzellen, in denen das Sonnenlicht durch eine dünne Schicht absorbiert wird, die aus Kupfer, Indium, Gallium, Selen und Schwefel besteht. Der theoretisch mögliche Wirkungsgrad ist aber noch lange nicht erreicht.

In der Arbeitsgruppe von Prof. Dr. Claudia Felser werden an der Universität Mainz die Eigenschaften des CIGS-Materials, dessen genaue Formel Cu(In,Ga)(Se,S)2 lautet, mit Hilfe von Computersimulationen untersucht. Die Arbeiten sind Teil des vom Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU) geförderten comCIGS-Projektes, in dem die Firmen IBM Mainz und die Schott AG gemeinsam mit der Johannes Gutenberg-Universität Mainz, dem Helmholtz-Zentrum Berlin für Materialien und Energie und der Universität Jena an der Optimierung von CIGS-Solarzellen forschen. Dabei beschäftigte die Wissenschaftler speziell das seit Jahren ungeklärte Indium-Gallium-Rätsel: Obwohl bisherige Rechnungen ein optimales Indium-Gallium-Verhältnis von 30:70 vorhergesagt haben, findet man in der Praxis die höchste Effizienz bei einem genau umgekehrten Verhältnis von 70:30.

Unterstützt durch die IBM Mainz stellte Christian Ludwig im Arbeitskreis Felser nun neue Rechnungen mit Hilfe eines Hybridverfahrens an, das eine Kombination aus Dichte-Funktional-Rechnungen und Monte-Carlo-Simulationen ist. „Mit Dichte-Funktional-Rechnungen werden quantenmechanisch die Energien lokaler Strukturen berechnet. Die Ergebnisse dienen dazu, um mit Monte-Carlo-Simulationen Temperatureffekte auf großen Längenskalen zu bestimmen“, erläutert Dr. Thomas Gruhn, Leiter der Theoriegruppe im Arbeitskreis Felser, die verwendete Methode. Christian Ludwig bedient sich bei seinen Untersuchungen eines Großrechners, den die Universität kürzlich von IBM im Rahmen eines Shared University Research (SUR) Wissenschaftspreises erhalten hat.

Produktion bei höheren Temperaturen fördert die Homogenität des Materials

Mit Hilfe der Simulationen wurde gefunden, dass die Indium- und Gallium-Atome nicht gleichmäßig im CIGS-Material verteilt sind. Knapp unterhalb der normalen Raumtemperatur existiert eine Phase, in der Indium und Gallium komplett getrennt vorliegen. Oberhalb der Entmischungstemperatur bilden sich verschieden große Cluster aus Indium- oder Gallium-Atomen. Je höher die Temperatur, desto homogener wird das Material. Es konnte nun gezeigt werden, dass das galliumreiche CIGS stets inhomogener als das indiumreiche CIGS ist. Die höhere Inhomogenität verschlechtert die optoelektronischen Eigenschaften des galliumreichen Materials, was zu der bis dato unverstandenen schlechten Effizienz der galliumreichen CIGS-Zellen beiträgt. Aus den Berechnungen ergibt sich auch ein konkreter Hinweis für die Herstellung der CIGS-Solarzellen. Findet der Herstellungsprozess bei höherer Temperatur statt, so wird das Material deutlich homogener. Wenn es danach hinreichend schnell abgekühlt wird, bleibt die gewünschte Homogenität erhalten.

In der Praxis war die Prozesstemperatur bisher stets durch die begrenzte Hitzebeständigkeit des Glases limitiert, das als Substrat für die Solarzellen dient. In dieser Hinsicht ist nun kürzlich ein entscheidender Durchbruch gelungen. Die Schott AG hat ein spezielles Glas entwickelt, mit dem die Prozesstemperatur auf deutlich über 600°C erhöht werden konnte. Das Ergebnis sind wesentlich homogenere Zellen. Ein neuer Effizienzrekord für die Zellen ist damit zum Greifen nah. Aber das comCIGS-Projekt denkt schon weiter. „Zurzeit wird an großformatigen Solarzellen gearbeitet, die die marktüblichen Zellen an Effizienz überbieten sollen“, kündigte Gruhn an. „Die Chancen dafür stehen gut.“

Veröffentlichung:
Christian D. R. Ludwig, Thomas Gruhn, Claudia Felser, Tanja Schilling, Johannes Windeln, Peter Kratzer
Indium-Gallium Segregation in CuInxGa1-xSe2: An Ab Initio–Based Monte Carlo Study
Physical Review Letters 105, 025702, 9 July 2010
DOI: 10.1103/PhysRevLett.105.025702
Weitere Informationen:
PD Dr. Thomas Gruhn
Institut für Anorganische Chemie und Analytische Chemie
Johannes Gutenberg-Universität Mainz (JGU)
55099 Mainz
Tel. +49 6131 39-22703
Fax +49 6131 39-26267
E-Mail: gruhn@uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.staff.uni-mainz.de/gruhn/gruhn.html
http://www.superconductivity.de/
http://prl.aps.org/abstract/PRL/v105/i2/e025702

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Forscher entwickeln effizientere Systeme für Brennstoffzellen und Kraft-Wärme-Kopplung
19.04.2017 | EWE-Forschungszentrum für Energietechnologie e. V.

nachricht Forscher entwickeln Elektrolyte für Redox-Flow-Batterien aus Lignin aus der Zellstoffherstellung
18.04.2017 | Fachagentur Nachwachsende Rohstoffe e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie