Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Brennstoffzelle für zu Hause

02.06.2014

Sie wandelt chemische direkt in elektrische Energie um. Doch der Marktdurchbruch der Brennstoffzelle blieb bisher aus. Zu komplex waren die Systeme. Fraunhofer und Vaillant haben ein einfaches Gerät für den Hausgebrauch entwickelt.

»Man spricht immer von einem Brennstoffzellensystem«, sagt Dr. Matthias Jahn vom Fraunhofer-Institut für Keramische Technologien und Systeme IKTS in Dresden. Eine einzelne Zelle erzeugt nicht genug Spannung, um eine ausreichende elektrische Leistung zu erreichen. In einem Brennstoffzellenstapel sind mehrere Zellen hintereinander geschaltet.


Fertigung der Zellstapel (engl. Stacks) am Fraunhofer IKTS.

© Fraunhofer IKTS

Jede davon hat etwa die Größe einer CD. Wir nennen die Stapel Stacks«, so Jahn. Brennstoffzellen wandeln Erdgas direkt in elektrische Energie um. Ihr Wirkungsgrad ist um ein Vielfaches höher als bei Verbrennungsmaschinen, wie zum Beispiel dem Automotor.

Diese benötigen noch einen Zwischenschritt. Sie wandeln zunächst die chemische in thermische (Wärme) und mechanische Energie (Kraft) um. Mit der Kraft treiben sie einen Generator an, der dann erst die elektrische Energie erzeugt. Dabei geht ein großer Teil der ursprünglich zur Verfügung stehenden Energie verloren.

Praxistest in Privathaushalten

Zusammen mit dem Heizungshersteller Vaillant hat das IKTS ein kompaktes, sicheres und robustes Brennstoffzellensystem entwickelt, das in Privathaushalten aus Erdgas Strom und Wärme erzeugt. Die Forscher verantworteten insbesondere den Bau der Prototypen, die Auslegung des Gesamtsystems, die Gestaltung der Keramikbauteile sowie die Entwicklung des Reformers und des Nachbrenners. Aktuell werden die Geräte in Privathaushalten im Praxistest »Callux« getestet (www.callux.net).

Sie sind ähnlich kompakt wie klassische Gasheizgeräte, die nur Wärme erzeugen. Sie lassen sich bequem an der Wand montieren und einfach warten. Mit einer Leistung von einem Kilowatt decken sie den mittleren Stromverbrauch eines Vier-Personen-Haushalts ab.

Das Bundesministerium für Verkehr und digitale Infrastruktur BMVI fördert Callux. Derzeit werden im europäischen Demonstrationsprojekt »ene.field« (www.enefield.eu) etwa 150 weitere Geräte in mehreren Europäischen Ländern installiert. Dazu hat Vaillant Anfang 2014 die Produktion einer Kleinserie gestartet. Parallel zum Praxistest arbeiten die beiden Partner bereits an neuen Modellen. »Jetzt geht es vor allem darum, die Kosten bei der Herstellung weiter zu drücken und die Lebensdauer der Anlage zu erhöhen«, sagt Jahn.

Das Prinzip der Brennstoffzelle ist bereits seit über 175 Jahren bekannt. Bisher blieb der Marktdurchbruch jedoch aus. Wesentlicher Grund war die Erfindung des elektrischen Generators. Er lief der komplexeren Brennstoffzelle den Rang ab. Erst in den 1960er Jahren wurde die Technologie von der NASA bei einigen Apollo-Mondmissionen praktisch umgesetzt. Ende der 1990er Jahre gab es weitere Projekte in der Automobilindustrie, die sich aber bis heute nicht durchsetzen konnten.

Die Gründe: Zu komplex, zu teuer, zu unsicher. »In unserem Projekt mit Vaillant haben wir große Fortschritte gemacht, die Technologie nah an die Marktreife zu bringen. Vaillant produziert bereits eine Kleinserie, die in geförderten Projekten an Kunden verkauft wird«, so Jahn. »Für den Durchbruch am Markt müssen die Kosten weiter deutlich sinken.«

Das Minikraftwerk für den Hausgebrauch basiert auf einer Festoxidbrennstoffzelle (engl. solid fuel cell, SOFC). SOFCs arbeiten gegenüber konkurrierenden Ansätzen, zum Beispiel den Polymerelektrolyt-Brennstoffzellen (engl. proton exchange membrane fuel cell, PEMFC), die in Autos zum Einsatz kommen, mit sehr viel höheren Temperaturen. Während sie bei PEMFCs lediglich bei 80 Grad liegen, erreichen die SOFCs bis zu 850 Grad. »Dadurch können die SOFCs deutlich einfacher und kostengünstiger aufgebaut werden«, sagt Jahn.

Der Elektrolyt einer SOFC leitet nur Sauerstoffionen weiter, keine Elektronen. Andernfalls käme es zu Kurzschlüssen. »Als Material für den Elektrolyt eignet sich Keramik besonders gut. Es verfügt über die gewünschte Leitfähigkeit und hält auch hohe Temperaturen aus«, sagt Jahn. So laufen alle Reaktionen auch ohne den Einsatz von Edelmetallen reibungslos ab, die für das direkte Umwandeln von chemischer in elektrische Energie notwendig sind: Wenn das Brennstoffzellen-Heizgerät an das Erdgasnetz angeschlossen ist, wandelt ein Reformer das Erdgas zunächst in ein wasserstoffreiches Gas um. Dieses reagiert dann im Stack mit dem Sauerstoff der Luft in einer geräuschlosen »kalten Verbrennung«. Dabei entstehen Strom und Wärme.

Weitere Informationen:

http://www.fraunhofer.de/de/presse/presseinformationen/2014/Juni/die_brennstoffz...

Dr.-Ing. Matthias Jahn | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2014/Juni/die_brennstoffzelle_fuer_zu_hause.html

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Körperenergie als Stromquelle
22.08.2017 | Karlsruher Institut für Technologie

nachricht „Cool“ bleiben im Büro: Wasser als Kältemittel im Alltag bald vor Durchbruch?
22.08.2017 | Deutsche Bundesstiftung Umwelt (DBU)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

6. Leichtbau-Tagung: Großserienfähiger Leichtbau im Automobil

23.08.2017 | Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Turbulente Bewegungen in der Atmosphäre eines fernen Sterns

23.08.2017 | Physik Astronomie

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungsnachrichten

Mit Algen Arthritis behandeln

23.08.2017 | Biowissenschaften Chemie