Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laser fügen Solarzellen zusammen

01.10.2007
Eine Solarzelle allein erzeugt nicht allzu viel Spannung - erst gemeinsam sind die Zellen stark. Verbunden werden sie über kleine Metall-bändchen. Ist die Temperatur beim Laserlöten zu hoch, kann die Lötstelle brechen. Ein neues System regelt die Löttemperatur automatisch.

Teamarbeit ist gefragt - auch bei Solarzellen: Um Taschenrechner, Parkscheinautomaten und Photovoltaikanlagen mit ausreichend Spannung zu versorgen, müssen mehrere Zellen gleichzeitig das Sonnenlicht einfangen. Sie werden hintereinander gereiht und durch kleine metallische Bändchen, Stringer, miteinander verbunden.

Dazu positionieren die Experten das Bändchen an der jeweils richtigen Stelle und schmelzen mit einer heißen Elektrode das Lötzinn, in das das Bänd-chen gehüllt ist. Erstarrt das Lötzinn wieder, verbindet es den Stringer fest mit der Metallschicht auf dem Silizium. Wie weit sich Bändchen und Silizium erhitzen, hängt vom Kontakt zwischen Lötelektrode und Bändchen ab.

Ist die Energie zu hoch, kommt es zu thermischen Spannungen, die die Lötverbindung schlimmstenfalls zerstören, den Stromkreis unterbrechen und das Solarmodul funktionsunfähig machen.

... mehr zu:
»Laser »Silizium »Solarzelle »Temperatur

Forscher des Fraunhofer-Instituts für Lasertechnik ILT in Aachen haben ein berührungsloses Lötverfahren entwickelt, bei dem sie die Temperatur ständig kontrollieren. Weicht sie ab, regelt das System sie automatisch in unbedenkliche Bereiche."Zum Löten verwenden wir statt der Elektrode einen Laserstrahl", sagt Dr. Arnold Gillner, Abteilungsleiter am ILT.

"Wir schmelzen das Lötzinn, indem wir mit einem Laserstrahl über das vorverzinnte Bändchen scannen. Eine Infrarot-Wärmekamera misst die Temperatur des Siliziums und des Bändchens in Echtzeit über die abgegebene Wärmestrahlung. Ist die Temperatur zu hoch oder zu niedrig, passt ein Regelkreis die Leistung des Lasers innerhalb einiger Millisekunden automatisch an." Für Anwendungen in der Oberflächentechnik ist das System in der Industrie bereits etabliert, für So-laranwendungen könnte es in etwa einem Jahr auf dem Markt sein.

In Zukunft wollen die Forscher die Solarzellen noch schneller und zuverlässiger miteinander verbinden: mit dem Laserschweißen. "Im Unterschied zum Löten schmilzt man dabei nicht den Lötzinn, sondern das Bändchen selbst an", sagt Gillner. Dafür müssen die Forscher es weiter erhitzen als beim Löten, aber nur für sehr kurze Zeit.

"Da der Laser nur sehr kurz auf die Materialien trifft, übertragen wir trotz der höheren Temperatur weniger Energie auf die Materialien - es entstehen noch weniger thermisch bedingte Defekte", erklärt der Experte. Die Herausforderung: Das Bändchen hat lediglich einen Durchmesser von etwa 200 Mikrometern, die metallische Beschichtung auf dem Silizium, die für den Stromfluss sorgt, eine Dicke von 10 Mikrometern. Die Forscher modulieren den Laserstrahl nun so, dass das Bändchen zwar schmilzt, aber die Schicht auf dem Silizium unbeschädigt bleibt.

Dr.-Ing. Arnold Gillner | Fraunhofer-Gesellschaft
Weitere Informationen:
http://www.ilt.fraunhofer.de
http://www.fraunhofer.de/fhg/press/pi/2007/10/Mediendienst102007Thema5.jsp

Weitere Berichte zu: Laser Silizium Solarzelle Temperatur

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Power-to-Liquid: 200 Liter Sprit aus Solarstrom und dem Kohlenstoffdioxid der Umgebungsluft
24.07.2017 | Karlsruher Institut für Technologie

nachricht Ein leistungsfähiges Lasersystem für anspruchsvolle Experimente in der Attosekunden-Forschung
19.07.2017 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

Recherche-Reise zum European XFEL und DESY nach Hamburg

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungsnachrichten

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungsnachrichten

Lupinen beim Trinken zugeschaut – erstmals 3D-Aufnahmen vom Wassertransport zu Wurzeln

24.07.2017 | Biowissenschaften Chemie