Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forschungsbeispiel Terahertz-Technik

02.05.2005


Ein weißer Fleck macht Karriere



Zwischen Radar und Infrarot liegt ein bisher kaum beachteter Teil des elektromagnetischen Spektrums: Terahertz. Die energiearme Strahlung kann Papier, Kleidung, Mauerwerk, Kunststoff und Keramik problemlos durchdringen, ohne Menschen zu schädigen. Die technische Nutzung der Strahlen eröffnet neue Möglichkeiten in der Qualitätsprüfung, Medizin- und Sicherheitstechnik.



Ist das Medikament echt, oder ein billiges Plagiat? Hat der Fluggast Sprengstoff im Schuh? Ist die Klebeverbindung, die zwei Kunststoffteile eines Fahrzeugs zusammenhält, stabil? Sind die Fundamente eines alten Bauwerks durchfeuchtet und möglicherweise instabil? Terahertz-Strahlen können diese Fragen beantworten. "Tera" steht für eine Zahl mit zwölf Nullen, Terahertz bezeichnet eine Frequenz von tausend Milliarden Schwingungen pro Sekunde. In diesem Frequenzbereich haben viele Materialien völlig andere Eigenschaften als in den bisher genutzten: Für Terahertz-Strahlen sind Medikamentenschachteln genauso durchsichtig wie Kleidung, Lederschuhe, Kunststoff, Ruß oder Stein. Gleichzeitig können mit Terahertz-Technik viele Substanzen nachgewiesen werden, beispielsweise Substanzen in Medikamenten, Spreng- oder Klebstoffe.

"Terahertz-Strahlen eignen sich für viele Anwendungen, doch sie sind bisher ein weißer Fleck im Spektrum", sagt Prof. Elmar Wagner, Leiter des Fraunhofer-Instituts für Physikalische Messtechnik IPM in Freiburg. "Während der größte Teil des elektromagnetischen Spektrums, das von Radiowellen bis zu Gammastrahlung reicht, längst technisch genutzt wird, werden Terahertz-Wellen bisher kaum eingesetzt." Der Grund: Der Bau von Sendern und Empfängern ist schwierig, technisch aufwändig und teuer.

Das kann sich schnell ändern. Seit einigen Jahren arbeiten Forscher auf der ganzen Welt an neuen Technologien, mit denen sich Terahertz-Wellen erzeugen und nutzen lassen. Die Geräteentwicklung steht noch am Anfang, doch viele Experten halten die Terahertz-Messtechnik bereits für eine Zukunftstechnologie. In Technology Review, dem Magazin des renommierten Massachusetts Institute of Technology MIT, bekam die im Englischen "T-Ray" genannte Strahlung 2004 einen Platz unter den "zehn neuen Technologien, die unser Leben verändern werden". Physiker in Japan und den USA arbeiten an neuen Terahertz-Geräten, die beispielsweise bei der Personenkontrolle auf Flughäfen eingesetzt werden sollen, um Sprengstoff oder Waffen aufzuspüren, oder um nach biologischen Waffen in Briefen und Paketen zu suchen.

"In Deutschland gibt es einzelne Arbeitsgruppen an Universitäten, die sich mit diesem Forschungszweig befassen, aber insgesamt wurde bisher nur wenig in die neue Technik investiert", bedauert Wagner. "Die Technik hat einen Entwicklungsstand erreicht, die sie für industrielle Anwendungen interessant macht. Deshalb haben wir zusammen mit der Technischen Universität Kaiserslautern, die auf diesem Gebiet eine langjährige Kompetenz aufgebaut hat, eine Arbeitsgruppe gegründet." Diese gemeinsame Aktivität TeraTec ist am Fachbereich Physik in Kaiserslautern angesiedelt. Sie wird als Fraunhofer-Projektgruppe gegründet und über eine Anlauffinanzierung des Landes Rheinland-Pfalz mit finanziert. Leiter der Forschungsarbeiten ist Prof Rene Beigang. Ihr Ziel: Lösungen für die Industrie zu entwickeln - beispielsweise kompakte, portable und kostengünstige Endgeräte, die flexibel eingesetzt werden können.

"Es gibt grundsätzlich mehrere Methoden, um Terahertz-Strahlung zu erzeugen", erläutert Wagner. "Wir verwenden Laser, die extrem kurze Lichtblitze aussenden, wie Femtosekundenlaser." Die Forscher aus Freiburg kooperieren auch mit Kollegen vom Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF in Jena, wo eine neue Generation von Lasern entwickelt wird. Kernstück dieser "Faserlaser" sind optische Glasfasern, die mit geringen Mengen eines aktiven Materials dotiert sind. Meist handelt es sich dabei um Ionen aus der Gruppe der seltenen Erden. Regt man diese Teilchen optisch an, geben diese die Energie in Form von Laserstrahlung ab. Die Vorteile dieses Konzeptes: Die große Oberfläche der viele Meter langen Faser sorgt für eine gleichmäßige und effiziente Kühlung. Außerdem hat der Faserlaser eine sehr gute Strahlqualität, weil das Licht in der Faser sehr eng geführt wird. "Faserlaser verbinden in hervorragender Weise die Vorteile von diodengepumpten Festkörperlasern mit denen von Wellenleitern", resümiert Prof. Andreas Tünnermann, Leiter des IOF.

Das Laserlicht aus dem Femtosekundenlaser - eine Femtosekunde ist der millionste Teil einer milliardsten Sekunde - wird im nächsten Schritt auf einen Halbleiterchip gelenkt. Hier erzeugt das Lichtbombardement freie Elektronen. Werden diese beschleunigt, so senden sie elektromagnetische Strahlung aus. Das Ergebnis ist Terahertz-Strahlung. Mit dieser werden die Untersuchungsobjekte durchleuchtet. Ein Detektor fängt den Reststrahl auf, der Informationen über das Objekt enthält. Ein Analysesystem kann diese entschlüsseln und Rückschlüsse ziehen auf die Dichte, die chemische Zusammensetzung, den Aggregatszustand oder Defekte im Material. "Wir können mit dieser Anordnung das Objekt sowohl in Reflexion als auch in Transmission untersuchen", so Wagner. "Mit der Messtechnik lassen sich verborgene Schichten durchleuchten, aber auch - dank tomographischer Aufnahmetechniken - dreidimensionale Strukturen."

Eine andere potenzielle Anwendung ist der Nachweis von Produktpiraterie bei Medikamenten: Unternehmen haften für ihre Produkte, solange sie nicht beweisen können, dass es sich um eine illegale Kopie handelt. Fälschungen lassen sich jedoch mit Terahertz-Technik aufspüren: Die Strahlen machen chemische Fingerabdrücke sichtbar, die bei den komplexen chemischen Prozesse in der Produktion entstehen und anschließend im Medikament gespeichert sind.

Geeignet wäre ein mobiles Messgerät auch zur Analyse von Abgasen: Terahertz-Strahlen können im Rauch von Kraftwerken, Müllverbrennungsanlagen oder Industrieanlagen Schadstoffe nachweisen, ohne dass Russpartikel das Messergebnis verfälschen.

Marion Horn | idw
Weitere Informationen:
http://www.fraunhofer.de/fhg/press/pi/2005/05/Presseinformation02052005_4.jsp

Weitere Berichte zu: Terahertz-Strahl Terahertz-Technik

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht TU Ilmenau erforscht innovative mikrooptische Bauelemente für neuartige Anwendungen
21.09.2017 | Technische Universität Ilmenau

nachricht Bald bessere Akkus?
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie