Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

JET-Weiterbetrieb in neuer Organisationsform

11.08.2000


Zur Forschung abgeordnet: Wissenschaftler

aus ganz Europa im JET-Kontrollraum (Foto: Mark Woollard, EFDA-JET)


... mehr zu:
»IPP »ITER »JET »Plasma
Die erste Experimentier-Kampagne des Europäischen Fusionsexperimentes JET (Joint European Torus) in neuer Organisationsform ging Ende Juli erfolgreich zu Ende. Seit Beginn des Jahres wird JET - die
weltweit größte Fusionsanlage - im Rahmen des European Fusion Development Agreement betrieben und ist kein selbständiges Gemeinschaftsprojekt der Europäischen Fusionslaboratorien mehr. Das Vorbereiten, Ausführen und Auswerten der Experimente übernehmen nun zeitweise von ihren Heimatlaboratorien abgeordnete Wissenschaftler und Techniker.

Rund 170 werden in diesem Jahr bei JET erwartet, allein 31 Personen ordnet das Max-Planck-Institut für Plasmaphysik (IPP) für 5 bis 70 Tage ab. Für den technischen Betrieb ist das britische Fusionslabor in Culham zuständig, das die Forschungsanlage samt der zugehörigen Messgeräte und Plasmaheizung betriebsbereit zur Verfügung stellt. Nach umfangreichen Vorbereitungs- und Umstellungsarbeiten hatten die Experimente planmäßig am 31. Mai wieder begonnen. In der neuen Organisationsform soll das leistungsfähige JET-Experiment über das bislang vorgesehene Betriebsende im Jahr 1999 hinaus zur Vorbereitung des Internationalen Experimentalreaktors ITER genutzt werden.

Entsprechend konzentriert sich das Arbeitsprogramm darauf, die Datenbasis für die gegenwärtig laufende ITER-Feinplanung zu komplettieren. Hierzu gehören Fragen zur Plasmaform, das Ausloten der Betriebsgrenzen, die Divertor-Physik und die Verfeinerung von Skalierungsgesetzen. Das wissenschaftliche Programm ist dabei in Arbeitsgruppen eingeteilt. Deren Leiter sind für die Vorbereitung und Ausführung einer Mess-Kampagne verantwortlich und koordinieren die Zuarbeit der von den 23 europäischen Laboratorien entsandten Mitarbeiter. Einer von ihnen, der IPP-Wissenschaftler und stellvertretende Leiter der JET-Arbeitsgruppe "Standardszenarien", Dr. Wolfgang Suttrop, kommentiert: "Was in der Elementarteilchenphysik schon lange üblich ist - die befristete Abordnung der Wissenschaftler zu einem der großen Beschleuniger - entwickelt sich vermehrt nun auch in der Fusionsforschung. Als weltweit einzigartige Anlage wird insbesondere der geplante ITER diese ’Reisephysik’ erfordern, um Wissenschaftlern aus aller Welt Zugang zu den Kenntnissen zu ermöglichen. "

Allerdings muss man nicht in jedem Fall reisen: Inzwischen wurden nämlich die JET-Datenbanken von außerhalb zugänglich gemacht. Auch von ihren Heimatlaboratorien aus können die Fusionsforscher nun die JET-Daten mit eigenen Auswerteprogrammen analysieren. Sogar "ferngesteuerte" JET-Experimente sind möglich, die von einem externen Fusionslabor aus vorbereitet, programmiert und betreut werden, wie das IPP in Garching Ende 1999 erstmals demonstriert hatte: Die JET-Entladungen wurden von Datensätzen gesteuert, die von Garching aus über Datenfernleitung direkt im JET-Computer berechnet worden waren. Den Ablauf der Entladungen konnten die IPP-Physiker auf den Garchinger Bildschirmen verfolgen. Korrekturen für die nächste Entladung wurden dann nach telefonischer Beratung mit den JET-Kollegen vor Ort eingebaut. Die Forscher konnten sich so auch "zuhause" als Teil des JET-Teams fühlen.

JET - eine Erfolgsgeschichte
Ab 1973 wurde JET als weltweit größtes Fusionsexperiment von den Europäischen Fusionslaboratorien gemeinsam konzipiert und seit 1983 gemeinsam betrieben. Die Anlage hat seither das Fusionsprogramm seinem Ziel - die Energieerzeugung der Sonne auf der Erde nachzuvollziehen und aus der Verschmelzung von Atomkernen Energie zu gewinnen - ein großes Stück näher gebracht. Brennstoff für diese nahezu unerschöpfliche Energiequelle ist ein dünnes Plasma aus den beiden Wasserstoffsorten Deuterium und Tritium. Zum Zünden des Fusionsfeuers muß es gelingen, den Brennstoff in Magnetfeldern einzuschließen und auf hohe Temperaturen aufzuheizen.

Inzwischen ist JET die führende Fusionsanlage weltweit, deren Plasmen in vielem bereits einem Kraftwerksplasma nahe kommen. In 17 Betriebsjahren hat JET sämtliche Zielvorgaben erreicht. Aus der Vielzahl der gewonnenen Erkenntnisse ragen als nach außen hin sichtbarster Erfolg die Rekord-Experimente des Jahres 1997 heraus. JET war es gelungen, eine Fusionsleistung von 16 Megawatt freizusetzen, wobei 65 Prozent der aufgewendeten Heizleistung per Fusion zurückgewonnen wurden. Ein brennendes Plasma soll JET allerdings auch in der neuen Betriebsphase nicht erzeugen. Dies ist Aufgabe des nächsten Schrittes, des in weltweiter Zusammenarbeit geplanten Internationalen Thermonuklearen Experimentalreaktors ITER. Mit rund 500 Megawatt Fusionsleistung soll er erstmals ein längere Zeit energielieferndes Plasma erzeugen.

Weitere Informationen finden Sie im WWW:

Isabella Milch |

Weitere Berichte zu: IPP ITER JET Plasma

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Leuchtende Nanoarchitekturen aus Galliumarsenid
22.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Neuer Sensor zur Messung der Luftströmung in Kühllagern von Obst und Gemüse
22.02.2018 | Leibniz-Institut für Agrartechnik und Bioökonomie e.V. (ATB)

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics