Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Siemens-Forschern gelingt Durchbruch bei der Steigerung des Wirkungsgrades organischer Solarzellen

07.01.2004


Als Ergebnis der Entwicklung von organischen Photodetektoren konnten Siemens-Forscher auch den Wirkungsgrad gedruckter organischer Solarzellen von drei auf über fünf Prozent steigern. Mit diesem Erfolg eröffnet sich erstmalig die Möglichkeit diese Technologie kommerziell zu nutzen. Im Gegensatz zu den heute verbreiteten Siliziumzellen können organische Solarzellen auf Folien gedruckt werden. Daher sind sie flexibel und wesentlich leichter. Eine weitere Stärke dieser Technologie sind die sehr niedrigen Herstellungskosten. "Unsere Bemühungen richten sich nur zum Teil auf eine Ablösung der nichtorganischen Technik." so Entwicklungsleiter Christoph Brabec, "Wir zielen vor allem auf neue Märkte, die wir aufgrund der Eigenschaften unserer Solarzellen erschließen können."


Über 90 Prozent der im Markt befindlichen Solarmodule sind aus Silizium gefertigt. Obwohl der Solarmarkt in den vergangenen Jahren ein stetiges Wachstum zu verzeichnen hatte, wird eine noch stärkere Verbreitung von Solartechnik vor allem durch die relativ hohen Kosten der siliziumbasierten Module gebremst. Weltweit wird daher an der Entwicklung neuer und kostengünstiger Solartechnologien gearbeitet. Neben den Produktionskosten sind insbesondere der Wirkungsgrad und die Lebensdauer einer Solarzelle von Bedeutung.

Eine vielversprechende alternative Technologie ist die organische Photovoltaik. Sie zeichnet sich dadurch aus, dass die Solarzellen aus speziellen Polymeren in einem Druckverfahren gefertigt werden, was die Herstellung völlig neuartiger Solarmodule ermöglicht. Die photoaktive Schicht der Zelle weist nur eine Dicke von etwa 100 Nanometern auf, dies entspricht etwa 1/200 der Dicke eines Haares. Da die Polymere auf eine Folie gedruckt werden, weisen die Solarmodule ein geringes Gewicht auf. Sie sind zudem flexibel und können an fast jede beliebige Form angepasst werden. Die Entwicklung dieser Technologie erfolgt bei Siemens im Rahmen von Forschungsaktivitäten auf dem Gebiet der Polymerelektronik. Ziele dieser Arbeiten sind vor allem neuartige Photodetektoren sowie Displays.


Den Siemens-Forschern ist damit ein wesentlicher Durchbruch bei der Weiterentwicklung der organischen Photovoltaik gelungen. Der erreichte Wirkungsgrad von mehr als fünf Prozent ist der höchste bisher gemessene Wert für gedruckte organische Solarzellen. Mit diesem Wert wird die Technologie im Markt einsetzbar. Nach Einschätzung der Forscher lässt sich mit dem heutigen Stand der Technik sogar ein Wirkungsgrad von etwa sieben Prozent erzielen. Ebenfalls erfreulich ist die für organische Halbleiter rela-tiv lange Lebensdauer. Selbst mit einfachen Versiegelungsmethoden fallen die Solarzellen im Dauerbetrieb bei Temperaturen von 80° Celsius nicht aus und erreichen bereits Lebensdauern von einigen tausend Sonnenstunden. Anfangs werden organische Solarzellen bei der Realisierung portabler Solarmodule Anwendung finden, mit denen beispielsweise Mobil- oder Satellitentelefone sowie Navigationssysteme unabhängig vom Bestehen eines Netzzugangs aufgeladen werden können. Mit dem Verkauf erster entsprechender Produkte wird bereits für das Jahr 2005 gerechnet. Mittelfristig soll ein Wirkungsgrad von zehn Prozent sowie eine Lebensdauer von 10.000 Sonnenstunden realisiert werden, was einer Betriebsdauer von etwa zehn Jahren entspricht. Damit wird ein Einsatz der organischen Photovoltaik in den wesentlichen Anwendungsgebieten traditioneller Solartechnik denkbar.

Darüber hinaus ergeben sich interessante neue Märkte, die durch Silizium basierte Technologien nicht ausreichend erschlossen werden können. Mit der organischen Pho-tovoltaik sind zum Beispiel Solarfenster und Solarplanen zu realisieren. Entsprechende Flächen können so in einer neuartigen Weise genutzt werden. Grundsätzlich ermöglicht die Technologie, dass Solarstrom mit einer erheblich geringeren Erstinvestition zur Verfügung gestellt werden kann. Dies wird zum Beispiel bei der Elektrifizierung abge-legener Gebiete in Entwicklungsländern oder bei dem Betreiben großer Solaranlagen zu völlig neuen Möglichkeiten führen.

"Neben den heute bekannten Einsatzfeldern, werden die Kostenvorteile und das geringere Gewicht der organischen Photovoltaik neue Applikationen und neue Geschäftsmodelle für die Nutzung von Solarenergie erschließen." so Andreas Brinkrolf vom Siemens Technology Accelerator, der die Vermarktung der Technologie begleitet. "Die organische Photovoltaik hat das Potenzial, die Solarindustrie wesentlich zu verändern."

Guido Weber | idw
Weitere Informationen:
http://www.siemens.de

Weitere Berichte zu: Photovoltaik Solarmodul Solarzelle

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Fraunhofer ISE steigert Weltrekord für multikristalline Siliciumsolarzelle auf 22,3 Prozent
25.09.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Bayerisch-tschechische Forschung zu umweltverträglichen ölisolierten Transformatoren
25.09.2017 | Ostbayerische Technische Hochschule Regensburg

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment

25.09.2017 | Biowissenschaften Chemie

Internationales Forscherteam entdeckt kohärenten Lichtverstärkungsprozess in Laser-angeregtem Glas

25.09.2017 | Physik Astronomie

LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

25.09.2017 | Messenachrichten