Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Anlage zur Klärschlammverbrennung versorgt sich selbst mit Energie

22.09.2015

Die derzeit weltweit größte Anlage für die Verbrennung von Klärschlamm läuft jetzt nahezu energieneutral. Mit zwei neu installierten Dampfkesseln und einer Dampfturbine erzeugt sie mindestens 95 Prozent ihres Strombedarfs aus der Abwärme des Verbrennungsprozesses. Die Betriebskosten reduzieren sich um fast zehn Prozent.

Bisher wird in der Anlage aus der Abwärme nur Dampf mit niederem Druck erzeugt. Genutzt wird er in verschiedenen Verarbeitungsprozessen sowie in geringem Maß zur Stromerzeugung. Nun ersetzte der Kesselspezialist NEM, der zu Siemens gehört, aber weiter unter dem früheren Namen operiert, zwei der insgesamt vier Niederdruck-Dampfkessel durch Hochdruckkessel und installierte eine Turbine, die über einen Generator Strom erzeugt. Dadurch kann der Betreiber die anfallende Abwärme viel effizienter nutzen und neun Mal mehr Strom als bisher produzieren.


Einbau des Hochdruck-Dampfkessels in die Verbrennungsanlage. Die Stromerzeugung erfolgt über eine angeschlossene Turbine mit Generator.


Um die Dampfkessel in der Anlage montieren zu können, mussten Teile des Daches entfernt werden

Verbrennung und Rückgewinnung von Rohstoffen wird attraktiver

Alleine in Deutschland fallen pro Jahr etwa acht Millionen Tonnen entwässerter Klärschlamm an. Etwa ein Drittel des Schlamms wird landwirtschaftlich genutzt, dieser Anteil stagniert seit Jahren, was an den erhöhten Qualitätsanforderungen für Klärschlämmen liegt.

Daher wird die Verbrennung immer attraktiver, entweder in spezialisierten Anlagen oder als zusätzlicher Brennstoff in Zementwerken, Kohlekraftwerken und Müllverbrennungsanlagen. Monoanlagen, die nur Klärschlamm verbrennen, haben den Vorteil, dass man im Schlamm enthaltene wertvolle Rohstoffe – allen voran Phosphor – abspalten und als Dünger wieder verwenden kann.

In den Niederlanden betreibt N.V. Slibverwerking Noord-Brabant (SNB) eine solche Monoanlage und verarbeitet im Jahr etwa 450.000 Tonnen entwässerten Klärschlamm. Verbrannt wird der getrocknete Schlamm bei einer Temperatur von etwa 900 Grad Celsius.

Abwärme wird wesentlich effizienter genutzt. Rückgewinnung von Phosphor zur Düngung


Ein maßgeschneiderter Kessel für spezielle Anforderungen

Bei der Nachrüstung der SNB-Anlage mit zwei Hochdruck-Dampfkesseln zur Stromerzeugung standen die Ingenieure des Kesselspezialisten NEM, der seit 2011 zu Siemens gehört, vor zwei Herausforderungen: Sie mussten die Kessel so konzipieren, dass sie in die seit 1997 bestehende Anlage hineinpassen. Außerdem mussten die Kessel bei teilweise laufendem Betrieb so schnell wie möglich installiert werden, damit der angelieferte Klärschlamm weiterhin verarbeitet werden konnte.

Die Experten realisierten einen Kessel, der die Spezifikationen für die Turbine – 450 Grad Celsius Dampftemperatur bei 60 Bar Druck – erfüllt, aber auch die vorgegebenen Beschränkungen für Größe und Gewicht einhielt. Erreicht haben sie dies unter anderem durch einen kleineren Durchmesser der Rohre im Kessel, der ihnen erlaubte, die Wandstärke und damit das Gewicht zu reduzieren.

Außerdem musste der Abstand der Rohre entsprechend der Höhenbeschränkung angepasst werden, wobei sie gleichzeitig die besonderen Eigenschaften des Brennstoffs berücksichtigen mussten. Besondere Aufmerksamkeit verlangte auch die Wahl der Dampftemperatur. Klärschlamm enthält eine Menge verschiedener chemischer Elemente, von denen manche bei sehr hohen Temperaturen Metall angreifen. Daher wurde Dampftemperatur auf 450 Grad Celsius beschränkt, obwohl sowohl Kessel als auch Turbine mit höheren Temperaturen arbeiten könnten.

Der Dampf treibt dann eine Siemens-Industriedampfturbine vom Typ SST 110 an. Die Turbine hat zwei parallel geschaltete Module. Das Hochdruckmodul wird mit 60 Bar Dampfdruck betrieben. Danach stellt das Niederdruckmodul den verbleibenden Dampf mit 2,5 Bar Druck als Prozessdampf bereit.

Genutzt wird dieser Niederdruckdampf vorwiegend für die Trocknung des Klärschlamms, der bei der Anlieferung etwa 75 Prozent Wasser enthält. Durch die Nachrüstung mit den Hochdruck-Kesseln entfiel der bisher eingesetzte, mit Niederdruckdampf betriebene Motor, über den mit einem Generator 450 Kilowatt elektrische Leistung erzeugt wurde. Stattdessen deckt die Anlage nun mit einem 3,5-Megawatt-Generator fast ihren gesamten Strombedarf.

Norbert Aschenbrenner


Kontakt

Herr Dr. Norbert Aschenbrenner

Redaktion

Siemens AG
norbert.aschenbrenner@siemens.com


Herr Florian Martini

Pressekontakt

Siemens AG
florian.martini@siemens.com

Dr. Norbert Aschenbrenner | Siemens Pictures of the Future
Weitere Informationen:
https://www.siemens.com

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Mit unkonfektionierten Kabeln durch die Schaltschrankwand
26.06.2017 | PHOENIX CONTACT GmbH & Co.KG

nachricht Gehäuse für schwere Steckverbinder in platzsparender Ausführung
26.06.2017 | PHOENIX CONTACT GmbH & Co.KG

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen

27.06.2017 | Biowissenschaften Chemie

Wave Trophy 2017: Doppelsieg für die beiden Teams von Phoenix Contact

27.06.2017 | Unternehmensmeldung

Warnsystem KATWARN startet international vernetzten Betrieb

27.06.2017 | Informationstechnologie