Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Adieu überhitzte Handys: Forscher der TU Graz prägen den Mobilfunk von übermorgen

08.08.2013
Technologien der zukünftigen Mobilfunkgenerationen im Fokus des EU-Projekts „Dragon“

„Heiße“ Ohren nach langen Handygesprächen gehören bald der Vergangenheit an – unter anderem dank Forschern der TU Graz und des Grazer Standortes des Forschungszentrums Telekommunikation Wien, kurz FTW Graz.

Im EU-Projekt „Dragon“ haben sich europaweit Wissenschafter mit Lösungen für die künftigen Anforderungen an Mobilfunktechnologien auseinandergesetzt. Der Fokus der Grazer Gruppe lag auf Architektur, Chipdesign und Komponenten der Sendeeinheit – mit besonderem Schwerpunkt auf Energieeffizienz zugunsten der Akkuleistung.

Kostengünstiger und gleichzeitig leistungsfähiger, smarter, kleiner und benutzerfreundlicher: Kaum ein Sektor entwickelt sich so rasant weiter wie der Mobilfunk und seine Technologien. Durch den stetigen Anstieg von Datenübertragungsraten braucht es neue Wege, um den Energieverbrauch pro gesendetem oder empfangenen Datenbit zu senken – aus zwei Gründen: um Energie zu sparen und um thermische Probleme, also beispielsweise das Aufheizen des Mobiltelefons, zu vermeiden.

Wettlauf vor der Zeit

Für Forscher und Entwickler bedeutet das einen Wettlauf noch vor der Zeit: „Wir stellen uns Jahre im Voraus die Frage, welche Anforderungen die künftigen Mobilfunkgenerationen erfüllen müssen, wie sich die Bedürfnisse der Benutzer entwickeln und was technisch überhaupt möglich sein wird“, erklärt Gernot Kubin, Leiter des Instituts für Signalverarbeitung und Sprachkommunikation der TU Graz.

Der Startschuss für das EU-Projekt „Dragon“ ist 2009 gefallen, mit dem Ziel, neue Design-Methoden, innovative Systeme und Schaltkreislösungen von Mobilfunksystemen im Nanobereich hervorzubringen. „Wir haben vor vier Jahren begonnen, konkrete Lösungen vorweg zu nehmen, die ab 2015 nötig und von internationalen Standardisierungsbehörden festgelegt werden. Der Standard, auf den wir in diesem Projekt hingearbeitet haben, ist auch heute noch nicht fertiggestellt“, schildert Kubin die Herausforderungen.

Akkuleistung statt heißes Handy

Der Fokus der Grazer Forscher – neben dem TU-Institut war auch das FTW Graz, ein Kompetenzzentrum mit TU Graz-Beteiligung, involviert – lag auf den Sendeeinheiten im Mobilfunk, und hier besonders auf der Architektur, dem Chipdesign und den Komponenten. „Flexibilität ist ein wichtiges Stichwort. Gerade im Mobilfunkbereich ist es ein generelles Ziel für alle Entwicklungen, dass sie sich möglichst einfach auch in neuen Halbleitertechnologien umsetzen lassen – sonst sind Neuerungen wieder nur von kurzer Dauer“, erklärt Kubin. Die Grazer Forschergruppe hat alle wissenschaftlichen Ziele im „Dragon“-Projekt erreicht:

Die reduzierte Anzahl der Einzelkomponenten in der Sendeeinheit erlaubt eine flexiblere und kostengünstigere Produktion, zudem lassen sich mehr Funktionen digitalisieren und daher auch in künftige, noch kleinere Chips übertragen. „Unser Hauptfokus lag auf der Energieeffizienz zugunsten der Akkuleistung. Die Systeme, die wir für die Sendeeinheiten künftiger Mobilfunkgenerationen entwickelt haben, sorgen dafür, dass sich das Handy beispielsweise beim Telefonieren nicht mehr so stark aufheizt – damit hält der Akku länger, da keine Energie verschwendet wird. Und die Ohren bleiben kühl“, schmunzelt Christian Vogel vom FTW Graz.

Europäischer „Drache“ in Graz

Die beiden Nachwuchsforscherinnen Katharina Hausmair und Shuli Chi waren im Rahmen Ihrer Dissertationen am Institut für Signalverarbeitung und Sprachkommunikation ebenfalls in das Projekt involviert. „Dragon“ steht für „Design methods for Radio Architectures GOing Nanoscale“ und wurde vom Siebenten Rahmenprogramm der EU von 2009 bis zum Sommer 2013 gefördert. Die Koordination lag bei der Technikon Forschungs- und Planungsgesellschaft in Villach. Neben der TU Graz und dem FTW Graz waren auch Ericsson, Infineon Technologies, die Universitäten Lund und Leuven sowie das belgische Forschungsinstitut imec an Bord. Das Institut für Signalverarbeitung und Sprachkommunikation der TU Graz und das FTW Graz haben besonders eng kooperiert: Nicht zuletzt durch die „Dragon“-Zusammenarbeit hat das COMET K1-Zentrum „Forschungszentrum Telekommunikation Wien“ erfolgreich einen Grazer Standort aufgebaut.

Nähere Informationen: http://www.dragon-project.eu/

Bildmaterial bei Nennung der angeführten Quellen honorarfrei verfügbar unter http://presse.tugraz.at/webgalleryBDR/data/Dragon/index.htm

Rückfragen:
Univ.-Prof. Dipl.-Ing. Dr.techn. Gernot Kubin
Institut für Signalverarbeitung und Sprachkommunikation
E-Mail: gernot.kubin@tugraz.at
Tel.: +43 (0) 316 873 4430
Mobil: +43 (0) 699 1072 1996
http://www.spsc.tugraz.at/people/gernot-kubin
Priv.-Doz. Dipl.-Ing. Dr.techn. Christian Vogel
Forschungszentrum Telekommunikation Wien
E-Mail: vogel@ftw.at
Tel +43 (0) 316 873 4383
Mobil +43 (0) 664 8269862
http://www.ftw.at

Alice Senarclens de Grancy | Technische Universität Graz
Weitere Informationen:
http://www.dragon-project.eu/

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Höhere Energieeffizienz durch Brennhilfsmittel aus Porenkeramik
05.12.2016 | Fraunhofer-Institut für Silicatforschung ISC

nachricht Planungstool für die Energiewende: Open Source Plattform für Stromnetze
05.12.2016 | Technische Universität München

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nährstoffhaushalt einer neuentdeckten “Todeszone” im Indischen Ozean auf der Kippe

06.12.2016 | Geowissenschaften

Entschlüsselung von Kommunikationswegen zwischen Tumor- und Immunzellen beim Eierstockkrebs

06.12.2016 | Medizin Gesundheit

Bioabbaubare Polymer-Beschichtung für Implantate

06.12.2016 | Materialwissenschaften