Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zucker-Pumpe in Pflanzen identifiziert

09.12.2011
Forscher entdecken das Protein, das Saccharose zu den Leitungsbahnen transportiert

Pflanzen müssen ihre Gewebe mit den Kohlenhydraten versorgen, die sie mittels Fotosynthese in den Blättern produzieren. Sie besitzen jedoch keine Muskelpumpe wie das menschliche Herz, um die lebenswichtigen Energieträger zu transportieren.

Stattdessen nutzen sie Pump-Proteine in den Membranen ihrer Zellen. Alisdair Fernie vom Max-Planck-Institut für molekulare Pflanzenphysiologie in Potsdam hat zusammen mit Kollegen der Carnegie Institution in Kalifornien ein bislang unbekanntes Protein in der Zucker-Transportkette identifiziert. Die Entdeckung der Forscher könnte künftig helfen, Pflanzen vor Schädlingen zu schützen und Ernteerträge zu steigern.

Leitungsbahnen aus miteinander verbundenen Zellen dienen Pflanzen als Transportsystem für Kohlenhydrate. Das so genannte Phloem besteht unter anderem aus den eigentlichen Leitungszellen, auch Siebelemente genannt, und umgebenden Geleit- und Phloem-Parenchymzellen. Im Phloem werden Kohlenhydrate hauptsächlich in Form von Saccharose-Zucker transportiert.

Die Zellmembran der Siebzellen ist mit Pump-Proteinen ausgerüstet, die Saccharose aktiv in die Leitungsbahnen befördern. Unklar war bisher, wie die Saccharose aus den Phloem-Parenchymzellen zu den Transportpumpen den Siebelementen kommt. Damit fehlte ein wichtiges Element der Transportkette.

Einer Forschergruppe an der Carnegie Institution in Stanford, USA, unter Beteiligung des Max-Planck-Instituts für molekulare Pflanzenphysiologie ist es nun gelungen, die bislang unbekannten Zucker-Transporter zu identifizieren: Es handelt sich dabei um verschiedene Proteine, die zu einer kürzlich identifizierten Proteinfamilie namens SWEET gehören. Die SWEETs kommen in der Zellmembran der Phloem-Parenchymzellen vor. Dort funktionieren sie als molekulare Pumpen, die die Saccharose aus den Parenchymzellen hinausbefördern und an ein zweites Transportsystem weiterleiten, welches die Gruppe vor 20 Jahren identifizierte, das den Zucker dann in die eigentlichen Leitungszellen des Phloems einspeist.

In ihrer Studien haben die Forscher den Zuckertransport in der Ackerschmalwand, Arabidopsis thaliana, sowie in Reispflanzen untersucht. Um der Funktion der SWEET-Proteine auf die Spur zu kommen, schalteten sie die entsprechenden Gene bei einer Reihe von Pflanzen künstlich aus. Dabei fanden sie heraus, dass Pflanzen ohne die SWEETs einen deutlich erhöhten Saccharose-Gehalt in den Blättern aufweisen. „Weil der Zucker nicht abtransportiert werden kann, sammelt er sich im Blattgewebe an, und andere Pflanzenteile wie Wurzeln oder Samen werden nicht ausreichend versorgt“, erklärt Alisdair Fernie vom Potsdamer Max-Planck-Institut.

Für die Pflanzenzüchtung ist die Entdeckung ein wichtiger Schritt, denn häufig bilden die vom Menschen genutzten Pflanzenteile wie Samenkörner oder unterirdische Knollen selbst keine Kohlenhydrate und werden stattdessen von den Blättern versorgt. „Wir können diese molekularen Pumpen nun genau regulieren und damit den Transport von Zucker zu den Samen der Pflanzen erhöhen. Auf diese Weise lässt sich vielleicht eines Tages der Ernteertrag von Feldfrüchten steigern“, erklärt Wolf Frommer von der Carnegie Institution. Außerdem sind die SWEETS ein vielversprechender Ansatzpunkt, um Pflanzen vor Schädlingsbefall zu schützen. Denn Pflanzenschädlinge wie etwa das Bakterium Xanthomonas oryzae, das beim Reis die Blattbräune verursacht, missbrauchen diese Transporter, um an den Zucker der Pflanze heranzukommen und für die eigene Ernährung zu nutzen. Deshalb wollen die Wissenschaftler nun die Rolle dieser Transporter bei Schädlingsbefall genauer aufklären.

Die Forscher vermuten zudem, dass die entsprechenden Pump-Proteine bei Menschen und Tieren eine ähnliche Funktion haben. Dies wäre von großer Bedeutung für die Erforschung von Diabetes und Übergewicht, denn bislang ist das Protein noch unbekannt, das für den Zuckertransport vom Darm ins Blut sowie aus Leberzellen verantwortlich ist.

Ansprechpartner
Dr. Alisdair Fernie
Max-Planck-Institut für molekulare Pflanzenphysiologie, Potsdam
Telefon: +49 331 567-8211
Fax: +49 331 567-8250
E-Mail: Fernie@mpimp-golm.mpg.de
Claudia Steinert
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für molekulare Pflanzenphysiologie, Potsdam
Telefon: +49 331 567-8275
Fax: +49 331 567-8408
E-Mail: Steinert@mpimp-golm.mpg.de
Originalveröffentlichung
Li-Qing Chen, Xiao-Qing Qu, Bi-Huei Hou, Davide Sosso, Sonia Osorio, Alisdair R. Fernie and Wolf B. Frommer
Sucrose Efflux Mediated by Sweet Proteins As a Key Step for Phloem Transport
Science Express, 08. Dezember 2011; doi/10.1126/science.1213351

Dr. Alisdair Fernie | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4683952/Pflanzen_Zucker-Pumpe

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie