Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Im Zentrum der biologischen Stickstoffchemie

18.11.2011
Das Rätsel um ein zentrales Atom in Enzymen, die Luftstickstoff spalten, ist gelöst: Es handelt sich um Kohlenstoff

Wie einige Bakterien den Stickstoff der Luft in biologisch brauchbare Verbindungen umwandeln, wird nun klarer. Ein internationales Forscherteam, an dem auch Wissenschaftler des Max-Planck-Instituts für bioanorganische Chemie in Mülheim an der Ruhr beteiligt waren, hat das letzte Detail im Bauplan des enzymatischen Kofaktors aufgeklärt, mit dem die Mikroorganismen die sehr stabilen Bindungen der Stickstoffmoleküle aufbrechen. Demnach handelt es sich bei einem zentralen Atom des Enzyms um Kohlenstoff.


Der dunkle Fleck ist weg: Als Sauerstoffatom hat ein internationales Forscherteam das schwarz dargestellte Atom im Zentrum des Kofaktors FeMoco identifiziert. Der Kofaktor ist Teil einer Nitrogenase, einem Enzym, mit dem Bakterien Luftstickstoff spalten. (orange – Eisen, gelb – Schwefel, hellblau – Molybdän, rot – Sauerstoff, grau – Kohlenstoff, blau – Stickstoff; Wasserstoffatome sind nicht gezeigt)
© Science / Serena DeBeer

Die Natur dieses einen Atoms ließ sich erst mit einer besonders feinfühligen Variante der Röntgen-Emissions-Spektroskopie aufdecken, die in den Biowissenschaften bislang kaum gebräuchlich ist. Die genaue Struktur des Kofaktors zu kennen, ist eine Voraussetzung, um Stickstoffverbindungen nach dem Vorbild der Natur schonender herzustellen als im industriellen Haber-Bosch-Verfahren, das mit hohem Druck und hoher Temperatur arbeitet.

Man könnte von einem Kartell der biologischen Stickstoffchemie sprechen: Nur eine Reihe mikrobieller Spezialisten wie Knöllchen- und Cyanobakterien können den Stickstoff der Luft in Ammoniak umwandeln, aus dem sich Aminosäuren und andere stickstoffhaltige Biomoleküle aufbauen lassen. Denn nur diese Bakterien besitzen den biochemischen Apparat, um die extrem starke Dreifachbindung von Stickstoff-Molekülen zu knacken.

Die Enzyme und Kofaktoren, mit dem die Einzeller Stickstoff aus der Luft chemisch fixieren, arbeiten bei sehr milden Bedingungen und sind daher auch für Chemiker interessant. Das industrielle Haber-Bosch-Verfahren spaltet die Stickstoffmoleküle nämlich unter sehr harschen Bedingungen – bei hohem Druck und hoher Temperatur –, um daraus Ammoniak zu erzeugen. Für einen Prozess, der unter milderen Bedingungen läuft, könnten sich Chemiker den enzymatischen Apparat zum Vorbild nehmen – wenn sie seine Arbeitsweise im Detail verstünden. Ein Detail hat ein internationales Team um Serena DeBeer, die am Max-Planck-Institut für bioanorganische Chemie und an der Cornell Universität im US-amerikanischen Ithaca forscht, nun geklärt.Die Forscher haben herausgefunden, dass an einer zentralen Stelle des Eisen-Molybdän-Kofaktors, kurz FeMoco, ein Kohlenstoffatom sitzt. Bei FeMoco handelt es sich um das aktive Zentrum der Stickstoff fixierenden Nitrogenase-Enzyme. Das Kohlenstoffatom bildet mit sieben Eisenionen, neun Sulfidionen und einem Molybdänion das aktive Zentrum, an dem Stickstoffmoleküle gespalten werden.

Die Forscher haben herausgefunden, dass an einer zentralen Stelle des Eisen-Molybdän-Kofaktors, kurz FeMoco, ein Kohlenstoffatom sitzt. Bei FeMoco handelt es sich um das aktive Zentrum der Stickstoff fixierenden Nitrogenase-Enzyme. Das Kohlenstoffatom bildet mit sieben Eisenionen, neun Sulfidionen und einem Molybdänion das aktive Zentrum, an dem Stickstoffmoleküle gespalten werden.

Die Identität des zentralen Atoms war jahrelang unbekannt
„Mit unserer Untersuchung haben wir einen ersten Schritt getan, um die biologische Stickstofffixierung besser zu verstehen“, sagt Serena DeBeer. Die Forscher klärten mit ihrer Studie eine seit Jahren offene Frage. In einer Röntgenstrukturuntersuchung hatten deutsche und amerikanische Wissenschaftler den Bauplan des Kofaktors im Jahr 2002 weitgehend entschlüsselt. Über ein Atom, das in seiner Mitte sitzt und von sechs zentralen Eisenatomen umgeben ist, konnten sie aber nicht mehr sagen, als dass es sich um ein leichtes Element, wie Kohlenstoff, Sauerstoff oder Stickstoff handeln müsse.

Gelöst haben die Forscher um Serena DeBeer das Problem nun mit einer Variante der Röntgenemissionsspektroskopie: der Valence to Core X-ray Emission Spectroscopy (V2C-XES), zu Deutsch Valenz-zu-Kern-Röntgenemissionsspektroskopie. Sie nutzt Röntgensignale, die in Prozessen zwischen den Valenz- und kernnahen Elektronen der Eisenatome entstehen. Die Valenzelektronen bilden die äußerste Schale in der Elektronenhülle eines Atoms; über sie steht das Atom mit seinen Nachbaratomen in Kontakt, so dass sie von den Nachbaratomen beeinflusst werden. Dies wiederum macht sich in einem V2C-XES Spektrum bemerkbar.

Im Fall von FeMoco heißt das: Das V2C-XES-Spektrum der sechs zentralen Eisenatome gibt Aufschluss über ihre Bindungspartner und mithin über das bis dato unbekannte leichte Atom. Um dieses zu identifizieren, verglichen die Forscher ihre experimentellen Daten des FeMoco-Komplexes zum einen mit Daten eines anderen Eisen-Schwefel-Komplexes in der Nitrogenase. Dessen Zentrum ähnelt dem von FeMoco, in der Mitte seiner sechs zentralen Eisenatome sitzt allerdings bekanntermaßen ein Schwefelatom.

Nur mit Simulationen ließen sich die Röntgendaten interpretieren
Zum anderen stellten die Forscher umfangreiche Berechnungen an, um zu klären, worum es sich bei dem zentralen Atom handelt. Dabei diente ihnen der Eisen-Schwefel-Komplex mit genau bekanntem Bauplan als Referenz. „Nur dank dieser theoretischen Studien, können wir die V2C-Spektren interpretieren“, sagt Frank Neese, Direktor am Mülheimer Max-Planck-Institut. Er simulierte, wie sich die V2C-Röntgenspektren verändern, wenn an der zentralen Stelle der Nitrogenase mal ein Stickstoff-, mal ein Sauerstoff-, und mal ein Kohlenstoffatom sitzt. „Gemessenes und simuliertes Spektrum stimmten nur überein, wenn an der zentralen Stelle ein Kohlenstoffatom sitzt“, sagt Serena DeBeer.

Das grundlegende, auf der Quantenmechanik beruhende, Instrumentarium für die Simulationen hatten Neese und DeBeer bereits in Vorläufer-Arbeiten entwickelt. „Nun haben wir das Rechenprotokoll an große Biomoleküle angepasst“, so Neese. In die Rechnungen der Forscher gingen nämlich nicht nur die mehr als 20 Atome ein, aus denen FeMoco besteht. Vielmehr berücksichtigten sie auch noch die Umgebung des Kofaktors, so dass ihre Simulation insgesamt 152 Atome der Nitrogenase umfasste. „Rechnungen für so viele Atome mit so komplizierter Elektronenstruktur wären vor zehn Jahren noch nicht möglich gewesen“, sagt Frank Neese.

Mit ihrer aktuellen Arbeit lösen die Forscher nicht nur ein Rätsel der Strukturbiologie. Sie beweisen auch, wie hilfreich ihre Methode ist. „Kombiniert mit theoretischen Analysen liefert die V2C-XES-Spektroskopie Strukturinformationen, die sich mit keiner anderen Methode gewinnen lassen“, sagt Serena DeBeer. „Dennoch wird diese Variante der Röntgenemissionsspektroskopie in der Strukturbiologie bisher noch kaum angewendet.“ Das liegt auch daran, dass die V2C-XES-Signale 1000 Mal schwächer sind als die Daten der herkömmlichen Röntgenemissionsspektroskopie, die nur auf elektronischen Prozessen im Inneren eines Atoms beruht. Daher verwendeten die Forscher das sehr intensive Röntgenlicht einer Synchrotron-Quelle und wiederholten ihre Messung rund tausend Mal, um genügend Daten zu sammeln.

Wie läuft die Stickstoffspaltung im Detail ab?
Nun wollen die Wissenschaftler um Serena DeBeer mehr über die Funktionsweise von FeMoco herausfinden, und welche Rolle das zentrale Kohlenstoffatom dabei spielt. Zu diesem Zweck möchten sie auch den elektronischen Zustand des Kohlenstoffatoms genauer studieren. „Dass ein Kohlenstoffatom mit sechs Atomen interagiert, ist sehr ungewöhnlich“, so DeBeer: „Daher wird es in FeMoco sicherlich eine außergewöhnliche elektronische Struktur besitzen.“

Zudem möchten die Forscher Verbindungen untersuchen, die dem FeMoco ähneln. Und sie möchten eine Nitrogenase samt FeMoco in Aktion beobachten. Wenn das Enzym nämlich gerade ein Stickstoffmolekül verarbeitet, äußert sich dies auch in seinen spektroskopischen Daten. Daraus erfahren die Wissenschaftler Details über den Reaktionsmechanismus der biologischen Stickstofffixierung. Diese Erkenntnisse könnten ihnen wiederum helfen, eine energieeffiziente technische Methode zu entwickeln, um Stickstoff aus der Luft chemisch nutzbar zu machen.

Ansprechpartner
Prof. Dr. Serena DeBeer
Max-Planck-Institut für bioanorganische Chemie, Mülheim an der Ruhr
Telefon: +49 208 306-3605
Fax: +49 208 306-3951
E-Mail: serena.debeer@mpi-mail.mpg.de
Prof. Dr. Frank Neese
Direktor
Max-Planck-Institut für bioanorganische Chemie, Mülheim an der Ruhr
Telefon: +49 208 306-3656
Fax: +49 208 306-3951
E-Mail: frank.neese@mpi-mail.mpg.de
Publikationsreferenz
Kyle M. Lancaster, Michael Roemelt, Patrick Ettenhuber, Yilin Hu, Markus W. Ribbe, Frank Neese, Uwe Bergmann, Serena DeBeer
X-Ray Emission Spectroscopy Evidences a Central Carbon in the Nitrogenase Iron-Molybdenum Cofactor

Science, 18.November 2011; doi: 10.1126/science.1206445

Prof. Dr. Serena DeBeer | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/4652273

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterieller Untermieter macht Blattnahrung für Käfer verdaulich
17.11.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Neues Werkzeug für gezielten Proteinabbau
17.11.2017 | Max-Planck-Institut für biophysikalische Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte