Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Zentriolen während der Zellteilung in Schach gehalten werden

23.07.2013
Die Fähigkeit von Zellen sich zu teilen ist einer der wichtigsten und grundlegendsten Prozesse des Lebens.

Dabei werden zunächst alle zellulären Bestandteile verdoppelt, bevor sie anschließend gleichmäßig auf die zwei entstehenden Tochterzellen aufgeteilt werden. Dieser Prozess muss streng reguliert und an die verschiedenen Entwicklungsstadien eines Organismus angepasst werden.

Treten hierbei Fehler auf, können Tumore entstehen. Alex Dammermann und sein Team an den Max F.Perutz Laboratories (MFPL) der Universität Wien und der Medizinischen Universität Wien sowie ihre KollegInnen am Institut für Molekulare Pathologie (IMP) publizieren dazu aktuell im Fachjournal "Current Biology".

Zentriolen – die Dirigenten der Zellteilung

Wenn sich unsere Zellen teilen, sammelt sich ihr genetisches Material – in Form von X-förmigen Chromosomen – in der Mitte der Zelle, bevor die beiden Arme des X von langen Spindelfasern, den Mikrotubuli, zu entgegengesetzten Polen der Zelle gezogen werden. Die Spindelpole werden in tierischen Zellen von sogenannten Zentrosomen organisiert. Diese bestehen aus einem Paar rechtwinklig zueinander angeordneten, zylinderförmigen Zentriolen, die in ein Mischmasch aus Proteinen, die pericentriolaren Matrix (PCM), eingebettet sind. Nach der Zellteilung enthält jede Tochterzelle genau ein Zentrosom mit jeweils zwei Zentriolen, die sich nun trennen, so dass auch die Tochterzelle in der nächsten Zellteilung zwei Zentrosomen und somit Spindelpole bilden.

Tritt bei der Teilung und Verdopplung der Zentriolen ein Fehler auf, führt dies zur Ausbildung von zu vielen oder zu wenigen Zentrosomen, wenn sich die Tochterzelle das nächste Mal teilt. Menschliche Krebszellen enthalten häufig überzählige Zentrosomen, was wiederum zur für Krebszellen typischen Veränderung der normalen Anzahl von Chromosomen führt.

PCM – der Kleber, der die Zentriolen verbindet

Wie die beiden rechtwinklig zueinander angeordneten Zentriolen zusammengehalten werden und was ihre Trennung reguliert, war lange unbekannt. Gabriela Cabral, Doktorandin im Labor von Alex Dammermann am Department für Mikrobiologie, Immunbiologie und Genetik der Universität Wien erklärt: "Viele ForscherInnen sind davon ausgegangen, dass derselbe Kleber, der Chromosomen verbindet, eine Substanz namens Cohesin, auch die Zentriolen zusammenhält. Wir konnten nun zeigen, dass dies nur unter ganz bestimmten Umständen, nämlich während der Befruchtung der Fall ist. In allen anderen Situationen, zum Beispiel den Zellteilungen im Anschluss an die Befruchtung, ist die PCM die Klebersubstanz." Dies erklärt auch die widersprüchlichen Ergebnisse vorangegangener Studien. Alex Dammermann sagt weiter:

"Wir waren wirklich überrascht, dass es zwei verschiedene zelluläre Mechanismen gibt, die die Teilung der Zentriolen kontrollieren. Diese Entdeckung haben wir nur machen können, weil wir den Fadenwurm C. elegans als Modellorganismus verwendet haben. Hätten wir Zellkulturen verwendet, hätten wir niemals herausgefunden, dass der Mechanismus der Zentriolenteilung abhängig vom Entwicklungsstadium ist."

Stammzellfaktoren und Krebs

Am Ende der Zellteilung wird auch die Proteinmatrix des PCM, die die Zentriolen umgibt, aufgelöst. Hierbei spielen wieder die Spindelfasern, die auch die X-förmigen Chromosomen trennen, eine wichtige Rolle. Sie ziehen die PCM und die Zentriolen auseinander. Dieser Prozess ist strengstens kontrolliert, damit jede Tochterzelle später die richtige Anzahl an Zentrosomen für die nächste Zellteilung hat. Treten jedoch Fehler auf, sind Zelltod oder Tumorentstehung die Folge. Eine weitere Aufgabe der Zentrosomen scheint die Aufteilung von Stammzellfaktoren zu sein. Gabriela Cabral: "Wenn sich eine Stammzelle teilt, entstehen nicht zwei identische Tochterzellen, wie dies bei anderen Zellen der Fall ist. Es entsteht eine neue Stammzelle und eine Tochterzelle, die sich in viele verschiedene Zellarten weiterentwickeln kann."

Bisher weiß man nur sehr wenig über diese Stammzellfaktoren und wie sie bei der Teilung einer Stammzelle verteilt werden. Dass Zentrosomen an diesem Prozess beteiligt sind, steht jedoch fest. "Unsere Ergebnisse zeigen, dass die PCM noch viele Geheimnisse hat, die wir nicht kennen. Wir haben es uns zur Aufgabe gemacht, diesen Mischmasch von Proteinen, seine Zusammensetzung und Funktion genauer zu verstehen", erklärt Alex Dammermann.

Publikation in Current Biology:
Gabriela Cabral, Sabina Sanegre Sans, Carrie R. Cowan, and Alexander Dammermann: Multiple mechanisms contribute to centriole separation in C. elegans. Current Biology (July 2013).

DOI: http://dx.doi.org/10.1016/j.cub.2013.06.043

Max F. Perutz Laboratories
Die Max F. Perutz Laboratories (MFPL) sind ein gemeinsames Forschungs- und Ausbildungszentrum der Universität Wien und der Medizinischen Universität Wien am Campus Vienna Biocenter. An den MFPL sind rund 500 WissenschafterInnen in über 60 Forschungsgruppen mit Grundlagenforschung im Bereich der Molekularbiologie beschäftigt.
Wissenschaftlicher Kontakt:
Dr. Alex Dammermann
Max F. Perutz Laboratories
Department für Mikrobiologie,
Immunbiologie und Genetik
Universität Wien
T +43-1-4277-546 81
alex.dammermann@univie.ac.at
Rückfragehinweis
Dr. Lilly Sommer
Max F. Perutz Laboratories
Communications
T +43-1-4277-240 14
lilly.sommer@univie.ac.at
Weitere Informationen:
http://dx.doi.org/10.1016/j.cub.2013.06.043
- Publikation in Current Biology
http://medienportal.univie.ac.at/presse
- Medienportal der Universität Wien

Veronika Schallhart | Universität Wien
Weitere Informationen:
http://www.univie.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entzündung weckt Schläfer
29.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Rostocker Forscher wollen Glyphosat „entzaubern“
29.03.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten