Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zellwachstum reguliert genetische Schaltkreise

27.01.2010
Genetische Schaltkreise kontrollieren die Aktivität von Genen und damit die Funktion von Zellen und Organismen.

Wissenschaftler vom Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam und der University of California in San Diego zeigen, wie Wachstumseffekte die genetischen Schaltkreise in einer Bakterienzelle beeinflussen. Demnach können Gene auch ohne Regulierung unterschiedlich aktiv sein - je nachdem, ob sie in schnell oder langsam wachsenden Zellen in Proteine übersetzt werden. Mit diesen Ergebnissen können die Forscher besser verstehen, wie Zellen ihre Gene regulieren, und so künftig künstliche genetische Schaltkreise entwickeln. (Cell, 24. Dezember 2009)

Schaltkreise kommen nicht nur in CD-Playern, Kaffeemaschinen oder Autos vor, sondern auch in lebenden Zellen - in diesem Fall als "genetische Schaltkreise". Sie bestehen aus einem Netzwerk unterschiedlicher Gene, die sich gegenseitig stimulieren oder hemmen können. Mit Hilfe solcher Schaltkreise kann eine Zelle Gene an- oder abschalten und so kontrollieren, welche Proteine sie produziert. Genetische Schaltkreise hängen jedoch auch von der Zelle als Ganzes ab, die ausreichend Ressourcen für die Bildung von Proteinen zur Verfügung stellen muss. So kann das Standard-Laborbakterium Escherichia coli seine optimale Generationszeit von 20 Minuten auf bis zu einige Stunden ausdehnen, wenn die Nahrung knapp ist. Dies verändert nahezu alle Eigenschaften der Bakterienzellen, wie Größe oder chemische Zusammensetzung.

Proteinkonzentration unregulierter Gene sinkt bei schnellerem Wachstum

Die Wissenschaftler demonstrieren mit einem Theoriemodell sowie einfachen synthetischen genetischen Schaltkreisen in Bakterien, dass die Wachstumsgeschwindigkeit die Aktivität von Genen und damit die genetischen Schaltkreise entscheidend beeinflusst. "Wir haben uns gefragt, wie die Aktivität eines hypothetischen Gens, das überhaupt nicht reguliert wird, vom Wachstum eines Bakteriums abhängt. Dieser Zusammenhang muss nämlich berücksichtigt werden, wenn man in Experimenten eine Änderung der Genexpression feststellt", sagt Stefan Klumpp, Nachwuchsgruppenleiter am Max-Planck-Institut für Kolloid- und Grenzflächenforschung.

Veränderungen innerhalb der Zelle wirken sich auf mehrere Arten auf die Konzentration an Proteinen aus. So sind in schneller wachsenden Zellen mehr RNA-Polymerasen für die Transkription von Genen vorhanden. Auf diese Weise kann das Gen häufiger ausgelesen werden. Gleichzeitig steht aber weniger Zeit zur Verfügung, um das Protein vor der nächsten Zellteilung anzureichern. Zudem sind schneller wachsende Zellen größer, was bei gleicher Anzahl von Proteinmolekülen eine geringere Konzentration zur Folge hat. Die Wissenschaftler integrierten alle Informationen in ihr theoretisches Modell und konnten so vorhersagen, wie die Wachstumsgeschwindigkeit der Bakterien die Proteinkonzentration beeinflusst. Demnach sinkt die Proteinkonzentration mit steigender Wachstumsrate - ein Ergebnis, das gut mit experimentellen Daten zu unregulierten Genen übereinstimmt.

Dass die Aktivität von Genen und genetischen Schaltkreise davon abhängt, wie schnell die Zellen wachsen, erschwert das Vermessen genetischer Schaltkreise erheblich. Denn die verschiedenen Messgrößen, die für die Charakterisierung der Aktivität von Genen benutzt werden, wie z.B. mRNA- und Proteinkonzentrationen, hängen auf unterschiedliche Weise von der Wachstumsrate ab. "Erhöht sich die Konzentration einer bestimmten Boten-RNA (mRNA) um einen Faktor drei im Vergleich zu einer anderen Messung, geht man normalerweise davon aus, dass die Genexpression hochreguliert wurde" erklärt Stefan Klumpp. "Wenn aber die Zellen mit dem höheren mRNA-Level auch schneller wachsen, könnte sich trotzdem die entsprechende Proteinkonzentration verringert haben." Veränderte Proteinkonzentrationen sind darüber hinaus nicht zwangsläufig eine Folge von regulierter Genexpression. Solche Schwankungen können auch auf verlangsamtes oder beschleunigtes Zellwachstum zurückgehen.

Feedback zwischen regulierten Genen und Zellwachstum

Die Untersuchungen zeigen zudem, wie diese Wachstumseffekte mit der Genregulierung zusammenwirken. Zum Beispiel wird die Proteinkonzentration unabhängig vom Größenwachstum, wenn ein Gen durch negative Rückkopplung kontrolliert wird: In diesem Fall wird die Proteinsynthese gestoppt, wenn eine bestimmte Zielkonzentration erreicht wird. Wächst die Zelle weiter, sinkt die Proteinkonzentration zunächst, so dass weiteres Protein bis zur Zielkonzentration gebildet wird. Das Wachstum von Zellen kann aber auch selbst zu Rückkopplungen führen: Dann nämlich, wenn das Zellwachstum von der Konzentration eines bestimmten Proteins abhängt, die wiederum an das Zellwachstum gekoppelt ist. Wirkt beispielsweise die Proteinkonzentration hemmend auf die Wachstumsrate und stellen langsamer wachsende Zellen gleichzeitig mehr von diesem Protein her (positives Feedback), kann ein Teil einer Population genetisch identischer Zellen schneller wachsen als der Rest. Dies beruht allein darauf, dass ein Zellwachstum hemmendes Protein in manchen Zellen etwas häufiger gebildet wird. Dadurch wachsen diese Zellen langsamer, was wiederum die Konzentration des Proteins steigen lässt und das Wachstum weiter verlangsamt.

Die Forscher nehmen an, dass diese Wachstumseffekte in der Natur aktiv genutzt werden, denn für Bakterien sind sie möglicherweise sogar hilfreich. Wenn sie neue Fähigkeiten erwerben, wie z.B. neue Stoffwechselfunktionen oder Toleranz gegenüber Antibiotika, können die neuen Eigenschaften auch ohne direkte Genregulierung allein durch die Wachstumseffekte reguliert werden. Daraus könnte sich dann ein regulativer Schaltkreis entwickeln.

Ansprechpartner:
Dr. Stefan Klumpp
Max Planck Institute of Colloids and Interfaces, Potsdam
Tel: +49 331 567 9620
Fax: +49 331 567 9612
E-Mail: klumpp@mpikg.mpg.de
Katja Schulze, Presse + Öffentlichkeitsarbeit
Max-Planck-Institut für Kolloid- und Grenzflächenforschung
Fon: +49 (331) 567 - 9203
Fax: +49 (331) 567 - 9202
katja.schulze@mpikg.mpg.de

Dr. Harald Rösch | Max-Planck-Institut
Weitere Informationen:
http://www.mpikg.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Lupinen beim Trinken zugeschaut – erstmals 3D-Aufnahmen vom Wassertransport zu Wurzeln
24.07.2017 | Universität Potsdam

nachricht Pfade ausleuchten im Fischgehirn
24.07.2017 | Max-Planck-Institut für Neurobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

Recherche-Reise zum European XFEL und DESY nach Hamburg

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungsnachrichten

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungsnachrichten

Lupinen beim Trinken zugeschaut – erstmals 3D-Aufnahmen vom Wassertransport zu Wurzeln

24.07.2017 | Biowissenschaften Chemie