Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zelluläre Müllabfuhr: Wie sich tierische Zellen vor gefährlichen Stoffen schützen

20.03.2017

In zwei aktuellen Studien haben Wissenschaftler um Ahmad Fazeli und Ann Wehman von der Universität Würzburg neue Erkenntnisse zur Abfallbeseitigung in tierischen Zellen veröffentlicht. Diese könnten helfen, die molekularen Mechanismen hinter Autoimmunkrankheiten wie Lupus zu verstehen.

Tierische Zellen entwickelten im Laufe der Evolution Strategien, um unerwünschte Fremdkörper abzubauen. Auf diese Weise beseitigen sie nicht nur eindringende Krankheitserreger, sondern auch abgestorbene Zellen und Zellfragmente. Ist die Abfallbeseitung in Zellen gestört, kann das zu Überreaktionen des Immunsystems und zur Ausbildung von Autoimmunerkrankungen wie Lupus führen.


Mikroskopaufnahme eines sich teilenden Embryos des Fadenwurms C. elegans. Die Überreste des Mittelkörpers (gelb) werden an die Umgebung abgegeben und von Nachbarzellen wieder aufgenommen und abgebaut.

Foto: Wehman

Wissenschaftler vom Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg untersuchten nun ganz bestimmte Zellfragmente: die Überreste des Mittelkörpers. Der Mittelkörper ist eine Übergangsstruktur, die am Ende jeder Zellteilung entsteht und das letzte Verbindungsstück zwischen den Tochterzellen darstellt. Diese Struktur wurde erstmals 1891 von dem deutschen Anatom Walther Flemming beschrieben, weshalb sie auch unter dem Namen Flemming-Körper bekannt ist.

Nach der Zellteilung wird der Mittelkörper entweder an eine Tochterzellen vererbt oder an die Umgebung abgegeben. In jedem Fall muss er jedoch bald abgebaut werden, da der Mittelkörper sonst weitere Auswirkungen auf die Zellen haben kann. "Bekannt ist", erklärt Dr. Ahmad Fazeli, Erstautor der beiden Studien, "dass Überreste des Mittelkörpers die Polarität und das Schicksal von Zellen beeinflussen".

Krebszellen beispielsweise würden die Flemming-Körper anreichern, was zu vermehrtem Wachstum führen könne. "Offen war die Frage, wie Zellen normalerweise die Beseitigung oder den Abbau der Mittelkörpers kontrollieren", so Fazeli weiter.

Bisherige Studien seien bislang von zwei möglichen Szenarien zum Schicksal des Mittelkörper ausgegangen: entweder verbleibt er in einer der Tochterzellen und wird durch Autophagie (Abbau zelleigener Bestandteile) verdaut, oder er wird zunächst von beiden Tochterzellen an die Umgebung abgegeben und später von einer Zelle über Phagozytose (Aufnahme und Abbau von Fremdkörpern) aufgenommen und verarbeitet.

Mit ihren neuen Studien konnten die Wissenschaftler beide mögliche Szenarien in einem Modell in Einklang bringen, wie sie in den Fachzeitschriften Journal of Cell Science und Communicative & Integrative Biology berichten. Das Team um Ann Wehman untersuchte dafür die sich schnell teilenden Zellen von Embryonen des Fadenwurms Caenorhabditis elegans, dessen Proteine und Abläufe in den Zellen erstaunlich starke Ähnlichkeiten zum menschlichen System haben.

In ihren Studien analysierten sie die Rolle verschiedener Proteine, die an Autophagie oder Phagzytose beteiligt sind und stellten überraschend fest, dass beide Systeme beim Abbau des Mittelkörpers zusammenarbeiten können.

Wie die Wissenschaftler herausfanden, wird der Mittelkörper in embryonalem Gewebe des Fadenwurms von den Tochterzellen an die Umgebung abgegeben und von angrenzenden Zellen aufgenommen. Autophagie-Proteine umschließen dort den aufgenommenen Mittelkörper und unterstützen seinen Abbau. Das bedeutet, dass Proteine, die normalerweise für die Entsorgung zelleigener Bestandteile verantwortlich sind, sich auch am Abbau von Fremdkörpern beteiligen.

Mit den aktuellen Studien konnten die Wissenschaftler zeigen, dass der Mittelkörper schließlich durch LC3-assoziierte Phagozytose (LAP) abgebaut wird. Bislang galt LAP als ein Prozess, der normalerweise für den Abbau eindringender Bakterien oder die Überreste abgestorbener Zellen zuständig ist, sozusagen eine zelluläre Müllabfuhr. Neu ist jedoch seine Beteiligung am Abbau des Mittelkörpers.

"Auf den ersten Blick scheint es verwunderlich, dass Zellen einen derart komplexen Mechanismus entwickelt haben, mit dem Mittelkörper umzugehen. Da diese Übergangsstruktur aber selbst Signaleigenschaften besitzt, ist deren Regulierung von großer Bedeutung für die Zelle", erläutert Dr. Ann Wehman. Das Freisetzen des Mittelkörpers geschieht am Ende der Zellteilung.

Ein in einer Tochterzelle verbleibender Mittelkörper könnte hingegen das Signal zu einer erneuten Teilung geben, was zu Veränderungen in der Größe und Form von Zellen führt oder sogar zu deren Fragmentierung. Da auch ein aufgenommener Mittelkörper das Schicksal der Empfängerzelle beeinflussen kann, ist dessen zügiger Abbau wichtig. In seine Bestandteile zerlegt, ist der Mittelkörper nicht nur "unschädlich", sondern kann von der Zelle auch recycelt werden.

Das neue Modell zum Schicksal und Abbau des Mittelkörpers vereint Erkenntnisse bisheriger Studien in Fadenwürmern, Fliegen und Säugetier-Zellen. Daher vermuten die Forscher um Ann Wehman, dass ihre Erkenntnisse weitestgehend auch auf den Menschen übertragbar sind und helfen könnten, die Mechanismen hinter Erkrankungen wie Krebs oder der Autoimmunkrankheit Lupus besser zu verstehen. Derzeit untersucht das Team weitere Funktionen von LAP in Wurmembryonen und will so herauszufinden, wie Zellen mit Hilfe von LAP ihre Umgebung reinigen und auf diese Weise den Embryo vor Zellabfall schützen.

Publikationen:

Fazeli G, Trinkwalder M, Irmisch L, Wehman AM. (2016) C. elegans midbodies are released, phagocytosed and undergo LC3-dependent degradation independent of macroautophagy. J Cell Science. 129(20):3721-3731.
http://jcs.biologists.org/content/129/20/3721

Fazeli G and Wehman AM. (2017) Rab GTPases mature the LC3-associated midbody phagosome. Communicative & Integrative Biology, DOI 10.1080/19420889.2017.1297349
http://www.tandfonline.com/doi/full/10.1080/19420889.2017.1297349

Website:

http://www.rudolf-virchow-zentrum.de/aktuelles/aktuelles-details/article/zellula...

Kontakt:

Dr. Ann Wehman (Arbeitsgruppenleiterin, Rudolf-Virchow-Zentrum)
Tel. 0931 31 81906, ann.wehman@uni-wuerzburg.de

Dr. Ahmad Fazeli (Postdoktorand, Rudolf-Virchow-Zentrum)
Tel. 0931 31 86130, gholamreza.fazeli@uni-wuerzburg.de

Dr. Frank Sommerlandt (Public Science Center, Rudolf-Virchow-Zentrum)
Tel. 0931 31 88449, frank.sommerlandt@uni-wuerzburg.de

Dr. Frank Sommerlandt | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.rudolf-virchow-zentrum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik